Properties

Label 2.47.e_i
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 8 x^{2} + 188 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.316137156182$, $\pm0.816137156182$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{10})\)
Galois group:  $C_2^2$
Jacobians:  $115$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2410$ $4882660$ $10834591210$ $23840368675600$ $52590666416910250$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $52$ $2210$ $104356$ $4885638$ $229308092$ $10779215330$ $506621120876$ $23811288443518$ $1119130563519892$ $52599132235830050$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 115 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47^{4}}$.

Endomorphism algebra over $\F_{47}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{10})\).
Endomorphism algebra over $\overline{\F}_{47}$
The base change of $A$ to $\F_{47^{4}}$ is 1.4879681.eko 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ae_i$2$(not in LMFDB)
2.47.a_adi$8$(not in LMFDB)
2.47.a_di$8$(not in LMFDB)