Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 8 x^{2} + 188 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.316137156182$, $\pm0.816137156182$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{10})\) |
Galois group: | $C_2^2$ |
Jacobians: | $115$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2410$ | $4882660$ | $10834591210$ | $23840368675600$ | $52590666416910250$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $2210$ | $104356$ | $4885638$ | $229308092$ | $10779215330$ | $506621120876$ | $23811288443518$ | $1119130563519892$ | $52599132235830050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 115 curves (of which all are hyperelliptic):
- $y^2=10 x^6+43 x^5+35 x^4+18 x^3+9 x^2+12 x+20$
- $y^2=25 x^5+15 x^4+32 x^3+23 x^2+46 x+3$
- $y^2=3 x^6+45 x^5+24 x^4+32 x^3+45 x^2+26 x+37$
- $y^2=41 x^6+5 x^5+18 x^4+3 x^3+18 x^2+20 x$
- $y^2=45 x^6+24 x^5+18 x^4+18 x^2+23 x+45$
- $y^2=22 x^6+37 x^5+33 x^3+46 x^2+2 x+4$
- $y^2=38 x^6+17 x^5+26 x^4+5 x^3+21 x^2+4 x+15$
- $y^2=7 x^6+8 x^5+21 x^4+32 x^3+18 x^2+41 x+26$
- $y^2=32 x^6+16 x^5+31 x^4+22 x^3+6 x^2+29 x+14$
- $y^2=43 x^5+2 x^4+26 x^2+2 x+19$
- $y^2=32 x^6+36 x^5+45 x^4+18 x^3+18 x^2+5 x+45$
- $y^2=8 x^6+13 x^5+34 x^4+41 x^3+12 x^2+6 x+9$
- $y^2=24 x^6+45 x^5+25 x^4+30 x^3+11 x^2+36 x+45$
- $y^2=19 x^6+36 x^5+22 x^4+37 x^3+26 x^2+46 x+4$
- $y^2=16 x^6+23 x^4+6 x^3+37 x^2+12 x+10$
- $y^2=27 x^6+35 x^5+40 x^4+43 x^3+35 x^2+46 x+35$
- $y^2=9 x^5+4 x^4+35 x^3+35 x^2+22 x+6$
- $y^2=25 x^6+10 x^5+40 x^4+11 x^3+45 x^2+9 x+27$
- $y^2=30 x^6+16 x^5+43 x^4+4 x^3+32 x^2+32 x+31$
- $y^2=46 x^6+34 x^5+28 x^4+44 x^3+44 x^2+10 x+27$
- and 95 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{4}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{10})\). |
The base change of $A$ to $\F_{47^{4}}$ is 1.4879681.eko 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
- Endomorphism algebra over $\F_{47^{2}}$
The base change of $A$ to $\F_{47^{2}}$ is the simple isogeny class 2.2209.a_eko and its endomorphism algebra is \(\Q(i, \sqrt{10})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ae_i | $2$ | (not in LMFDB) |
2.47.a_adi | $8$ | (not in LMFDB) |
2.47.a_di | $8$ | (not in LMFDB) |