Properties

Label 2.47.ax_iq
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 13 x + 47 x^{2} )( 1 - 10 x + 47 x^{2} )$
  $1 - 23 x + 224 x^{2} - 1081 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.102979434792$, $\pm0.239834262915$
Angle rank:  $2$ (numerical)
Jacobians:  $4$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1330$ $4705540$ $10784049640$ $23826784122400$ $52605088131130150$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $25$ $2129$ $103870$ $4882857$ $229370975$ $10779330026$ $506623272425$ $23811285521713$ $1119130479467650$ $52599132548499689$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.an $\times$ 1.47.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ad_abk$2$(not in LMFDB)
2.47.d_abk$2$(not in LMFDB)
2.47.x_iq$2$(not in LMFDB)