Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 47 x^{2} )^{2}$ |
$1 - 22 x + 215 x^{2} - 1034 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.203632126579$, $\pm0.203632126579$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1369$ | $4765489$ | $10825153936$ | $23847312323641$ | $52613003936311009$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $26$ | $2156$ | $104264$ | $4887060$ | $229405486$ | $10779533822$ | $506623781410$ | $23811278963044$ | $1119130357352408$ | $52599131324415836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=5 x^6+31 x^5+32 x^4+7 x^3+32 x^2+31 x+5$
- $y^2=15 x^6+25 x^5+x^4+21 x^3+23 x^2+x+23$
- $y^2=26 x^6+4 x^5+39 x^4+21 x^3+37 x^2+13 x+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.