Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 47 x^{2} )( 1 - 6 x + 47 x^{2} )$ |
$1 - 19 x + 172 x^{2} - 893 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.102979434792$, $\pm0.355830380849$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
Isomorphism classes: | 150 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1470$ | $4842180$ | $10806810840$ | $23810548557600$ | $52594117115543850$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $29$ | $2193$ | $104090$ | $4879529$ | $229323139$ | $10779101226$ | $506623989733$ | $23811303612721$ | $1119130592070470$ | $52599132608964393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=4 x^6+2 x^5+11 x^4+10 x^3+36 x^2+20 x+19$
- $y^2=46 x^6+46 x^5+42 x^4+41 x^3+39 x^2+17 x+22$
- $y^2=x^6+34 x^5+27 x^4+10 x^3+2 x^2+29 x+31$
- $y^2=29 x^6+4 x^5+11 x^4+45 x^3+14 x^2+34 x+23$
- $y^2=43 x^6+13 x^5+4 x^4+40 x^3+24 x^2+41 x+43$
- $y^2=13 x^6+45 x^5+15 x^4+10 x^3+28 x^2+23 x+35$
- $y^2=23 x^6+25 x^5+13 x^4+x^3+24 x^2+7 x+39$
- $y^2=46 x^6+10 x^5+28 x^4+44 x^3+17 x^2+25 x+32$
- $y^2=45 x^6+22 x^5+15 x^4+22 x^3+16 x^2+9 x$
- $y^2=29 x^6+32 x^5+8 x^4+37 x^3+3 x+37$
- $y^2=29 x^6+4 x^5+17 x^4+16 x^3+40 x^2+23 x+10$
- $y^2=40 x^6+25 x^5+26 x^4+9 x^3+25 x^2+19 x+35$
- $y^2=22 x^5+43 x^4+40 x^3+39 x^2+3 x+37$
- $y^2=14 x^6+40 x^5+35 x^4+33 x^3+27 x^2+35 x+15$
- $y^2=39 x^6+12 x^5+39 x^4+32 x^3+38 x^2+22 x+2$
- $y^2=41 x^6+13 x^5+19 x^4+30 x^3+13 x^2+20 x+31$
- $y^2=19 x^6+22 x^5+10 x^4+x^3+42 x^2+42 x+27$
- $y^2=39 x^6+7 x^5+28 x^4+3 x^3+46 x^2+7 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.an $\times$ 1.47.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ah_q | $2$ | (not in LMFDB) |
2.47.h_q | $2$ | (not in LMFDB) |
2.47.t_gq | $2$ | (not in LMFDB) |