Properties

Label 2.47.ae_dt
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x + 47 x^{2} )( 1 - x + 47 x^{2} )$
  $1 - 4 x + 97 x^{2} - 188 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.429786591898$, $\pm0.476764235367$
Angle rank:  $2$ (numerical)
Jacobians:  $30$
Cyclic group of points:    yes

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2115$ $5285385$ $10835128080$ $23776965095625$ $52590453654291075$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $44$ $2388$ $104360$ $4872644$ $229307164$ $10779454206$ $506625239668$ $23811280399876$ $1119130370998520$ $52599132305549268$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.ad $\times$ 1.47.ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ac_dn$2$(not in LMFDB)
2.47.c_dn$2$(not in LMFDB)
2.47.e_dt$2$(not in LMFDB)