Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 3 x + 47 x^{2} )( 1 - x + 47 x^{2} )$ |
| $1 - 4 x + 97 x^{2} - 188 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.429786591898$, $\pm0.476764235367$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $30$ |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2115$ | $5285385$ | $10835128080$ | $23776965095625$ | $52590453654291075$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $2388$ | $104360$ | $4872644$ | $229307164$ | $10779454206$ | $506625239668$ | $23811280399876$ | $1119130370998520$ | $52599132305549268$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=11 x^6+27 x^5+5 x^4+46 x^3+31 x^2+2 x+43$
- $y^2=20 x^6+41 x^5+20 x^4+42 x^3+20 x^2+41 x+20$
- $y^2=x^6+21 x^5+35 x^4+7 x^3+39 x^2+25 x+9$
- $y^2=38 x^6+36 x^5+30 x^4+43 x^3+45 x^2+34 x+46$
- $y^2=31 x^6+25 x^5+32 x^4+5 x^3+34 x^2+24 x+10$
- $y^2=15 x^6+10 x^5+9 x^4+19 x^3+42 x^2+35 x+10$
- $y^2=12 x^6+41 x^5+37 x^4+4 x^3+24 x^2+35 x+27$
- $y^2=44 x^6+27 x^5+x^4+2 x^3+14 x^2+28 x+40$
- $y^2=34 x^6+33 x^5+10 x^4+20 x^3+11 x^2+31 x+32$
- $y^2=30 x^6+26 x^5+44 x^4+39 x^3+35 x^2+40 x+40$
- $y^2=4 x^6+41 x^5+36 x^4+43 x^3+36 x^2+41 x+4$
- $y^2=2 x^6+7 x^5+22 x^4+13 x^3+10 x^2+3 x+1$
- $y^2=29 x^6+23 x^5+14 x^4+27 x^3+17 x^2+26 x+22$
- $y^2=4 x^6+10 x^5+42 x^4+20 x^3+32 x^2+43 x+14$
- $y^2=40 x^6+45 x^5+32 x^4+30 x^3+36 x^2+43 x+43$
- $y^2=12 x^6+44 x^5+22 x^4+12 x^3+40 x^2+13 x+8$
- $y^2=41 x^6+43 x^5+33 x^4+36 x^3+35 x^2+22 x+35$
- $y^2=36 x^6+3 x^5+22 x^4+16 x^3+38 x^2+14 x+21$
- $y^2=37 x^6+10 x^5+18 x^4+42 x^3+3 x^2+29 x+3$
- $y^2=45 x^6+4 x^5+2 x^4+36 x^3+36 x^2+27 x+39$
- $y^2=24 x^6+17 x^5+x^4+14 x^3+37 x^2+8 x+17$
- $y^2=26 x^6+26 x^5+19 x^4+3 x^3+43 x^2+13 x+22$
- $y^2=22 x^6+44 x^4+44 x^3+15 x^2+23$
- $y^2=10 x^6+16 x^5+26 x^4+36 x^3+35 x^2+34 x+39$
- $y^2=9 x^6+30 x^5+32 x^4+3 x^3+27 x^2+22 x+37$
- $y^2=33 x^6+9 x^5+42 x^4+6 x^3+2 x^2+24 x+40$
- $y^2=29 x^6+42 x^5+37 x^4+3 x^3+37 x^2+42 x+29$
- $y^2=26 x^6+12 x^5+9 x^4+31 x^3+7 x^2+9 x+23$
- $y^2=40 x^6+42 x^5+38 x^4+17 x^3+19 x^2+34 x+5$
- $y^2=11 x^6+27 x^5+46 x^4+45 x^3+20 x^2+37 x+31$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.ad $\times$ 1.47.ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ac_dn | $2$ | (not in LMFDB) |
| 2.47.c_dn | $2$ | (not in LMFDB) |
| 2.47.e_dt | $2$ | (not in LMFDB) |