Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x - 6 x^{2} + 43 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.255746902027$, $\pm0.779980959098$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2617317.1 |
Galois group: | $D_{4}$ |
Jacobians: | $176$ |
Isomorphism classes: | 220 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1888$ | $3398400$ | $6333175168$ | $11712585600000$ | $21610375422569248$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $45$ | $1837$ | $79656$ | $3425929$ | $147000915$ | $6321431014$ | $271817917857$ | $11688188524561$ | $502592630529048$ | $21611482128318157$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 176 curves (of which all are hyperelliptic):
- $y^2=21 x^6+20 x^5+25 x^4+33 x^3+12 x^2+21 x+24$
- $y^2=3 x^6+15 x^5+38 x^4+23 x^3+36 x^2+12 x+3$
- $y^2=10 x^6+34 x^5+30 x^4+34 x^3+14 x^2+7 x+30$
- $y^2=10 x^6+41 x^5+20 x^4+15 x^3+31 x^2+15 x+28$
- $y^2=5 x^6+12 x^5+2 x^4+9 x^2+21 x+3$
- $y^2=8 x^6+11 x^5+23 x^4+6 x^3+17 x^2+15 x+20$
- $y^2=17 x^6+10 x^5+6 x^4+28 x^3+37 x^2+40 x+1$
- $y^2=23 x^6+34 x^5+8 x^4+17 x^3+2 x^2+13 x+31$
- $y^2=37 x^6+26 x^5+16 x^4+32 x^3+2 x^2+42 x$
- $y^2=40 x^6+6 x^5+16 x^4+31 x^3+10 x^2+25 x+35$
- $y^2=21 x^6+11 x^5+4 x^4+17 x^3+32 x^2+31 x+8$
- $y^2=4 x^6+27 x^5+13 x^4+12 x^3+35 x+21$
- $y^2=4 x^6+12 x^5+19 x^4+5 x^3+32 x^2+10 x+17$
- $y^2=4 x^6+19 x^5+13 x^4+29 x^3+6 x^2+16 x+41$
- $y^2=5 x^6+34 x^5+39 x^4+36 x^3+6 x^2+35 x+40$
- $y^2=2 x^6+21 x^5+31 x^4+31 x^3+33 x^2+38 x+13$
- $y^2=14 x^6+27 x^5+42 x^4+38 x^3+8 x^2+21 x+2$
- $y^2=2 x^6+38 x^5+26 x^4+4 x^3+12 x^2+22 x+27$
- $y^2=27 x^6+15 x^5+14 x^4+x^3+19 x^2+17 x+13$
- $y^2=42 x^6+24 x^5+8 x^4+26 x^3+4 x^2+15 x+11$
- and 156 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.2617317.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ab_ag | $2$ | (not in LMFDB) |