Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 122 x^{2} - 602 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.200190160260$, $\pm0.416664938671$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1614288.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
Isomorphism classes: | 64 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1356$ | $3509328$ | $6367229532$ | $11692126358784$ | $21611603468277276$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $1898$ | $80082$ | $3419950$ | $147009270$ | $6321491354$ | $271819936362$ | $11688201552670$ | $502592543818542$ | $21611481764638538$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=37 x^6+5 x^4+32 x^3+9 x^2+2 x+12$
- $y^2=5 x^6+5 x^5+18 x^4+15 x^3+11 x^2+28 x+31$
- $y^2=26 x^6+10 x^5+12 x^4+37 x^3+19 x^2+33 x+29$
- $y^2=28 x^6+36 x^5+23 x^4+17 x^3+12 x^2+31 x+5$
- $y^2=26 x^6+23 x^5+27 x^4+35 x^3+6 x^2+38 x+33$
- $y^2=26 x^6+4 x^5+6 x^4+33 x^3+10 x^2+38 x+41$
- $y^2=25 x^6+x^5+22 x^4+5 x^3+x^2+7 x+42$
- $y^2=4 x^6+11 x^5+40 x^4+41 x^3+20 x^2+25 x+42$
- $y^2=2 x^6+23 x^5+14 x^4+37 x^3+38 x^2+15 x+21$
- $y^2=20 x^6+16 x^5+28 x^4+11 x^3+4 x^2+19 x+16$
- $y^2=38 x^6+15 x^5+28 x^4+34 x^3+7 x^2+37$
- $y^2=30 x^6+23 x^5+14 x^4+4 x^3+27 x^2+16 x+22$
- $y^2=25 x^6+42 x^5+3 x^3+9 x^2+12 x+8$
- $y^2=3 x^6+9 x^5+22 x^4+25 x^3+19 x^2+26 x+38$
- $y^2=16 x^6+20 x^5+29 x^4+21 x^3+29 x^2+3 x+18$
- $y^2=7 x^6+30 x^5+19 x^4+28 x^3+39 x^2+20 x+33$
- $y^2=29 x^6+37 x^5+16 x^4+30 x^3+4 x^2+15 x+18$
- $y^2=2 x^6+25 x^5+30 x^4+20 x^3+33 x^2+9 x+39$
- $y^2=3 x^6+31 x^5+32 x^4+30 x^3+8 x^2+37$
- $y^2=15 x^6+9 x^5+35 x^4+34 x^3+18 x^2+19 x+23$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.1614288.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.o_es | $2$ | (not in LMFDB) |