Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 88 x^{2} - 258 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.358342712423$, $\pm0.491401019181$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2097984.2 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1674$ | $3686148$ | $6368774850$ | $11678262413904$ | $21608174098089954$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1990$ | $80102$ | $3415894$ | $146985938$ | $6321378310$ | $271818834626$ | $11688199846174$ | $502592635229366$ | $21611482520456950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=15 x^6+40 x^5+13 x^4+4 x^3+2 x^2+9 x+2$
- $y^2=35 x^6+30 x^5+42 x^4+40 x^3+4 x^2+35 x+10$
- $y^2=27 x^6+4 x^5+9 x^4+31 x^3+6 x^2+22 x+17$
- $y^2=33 x^6+13 x^5+41 x^4+19 x^3+21 x^2+5 x+1$
- $y^2=9 x^6+34 x^5+9 x^4+13 x^3+16 x^2+25 x+34$
- $y^2=26 x^6+7 x^5+5 x^4+20 x^3+2 x^2+37 x+33$
- $y^2=33 x^6+38 x^5+16 x^4+19 x^3+22 x^2+24 x+34$
- $y^2=14 x^6+13 x^5+22 x^4+15 x^3+10 x+10$
- $y^2=7 x^6+16 x^5+37 x^4+13 x^3+x^2+18 x+2$
- $y^2=26 x^6+4 x^5+24 x^4+25 x^3+18 x^2+27 x+20$
- $y^2=14 x^6+x^5+14 x^4+18 x^3+15 x^2+x+32$
- $y^2=19 x^6+4 x^5+17 x^4+14 x^3+41 x^2+42 x+36$
- $y^2=31 x^6+7 x^5+21 x^4+32 x^3+13 x^2+3 x+8$
- $y^2=36 x^6+x^5+42 x^4+14 x^3+25 x^2+29 x+27$
- $y^2=33 x^6+34 x^5+32 x^4+17 x^3+42 x^2+39$
- $y^2=20 x^6+42 x^5+30 x^4+16 x^3+21 x^2+5 x+8$
- $y^2=11 x^6+34 x^5+29 x^4+42 x^3+20 x^2+9 x+11$
- $y^2=32 x^6+40 x^5+42 x^4+16 x^3+3 x^2+20 x+41$
- $y^2=x^6+28 x^5+12 x^4+17 x^3+40 x^2+5 x+37$
- $y^2=10 x^6+7 x^5+23 x^4+11 x^3+38 x+30$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.2097984.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.g_dk | $2$ | (not in LMFDB) |