Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 46 x^{2} + 328 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.419324440078$, $\pm0.839428310540$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.62192.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $156$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2064$ | $2873088$ | $4777270416$ | $7984012750848$ | $13418249024640144$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $1710$ | $69314$ | $2825438$ | $115818130$ | $4750248078$ | $194754321826$ | $7984931261374$ | $327381900751346$ | $13422659044295790$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=16 x^6+40 x^4+26 x^3+38 x^2+35 x+30$
- $y^2=36 x^6+24 x^5+6 x^4+24 x^3+33 x^2+x+17$
- $y^2=16 x^6+19 x^5+33 x^4+19 x^3+9 x^2+23 x+8$
- $y^2=17 x^6+9 x^5+35 x^4+4 x^3+31 x^2+28 x+23$
- $y^2=7 x^6+24 x^5+4 x^4+16 x^3+20 x^2+4 x+4$
- $y^2=25 x^6+38 x^5+9 x^4+33 x^3+37 x^2+26 x+39$
- $y^2=12 x^6+38 x^5+25 x^4+37 x^3+23 x^2+2 x+18$
- $y^2=13 x^6+39 x^5+13 x^4+28 x^3+3 x^2+32 x$
- $y^2=x^6+31 x^5+27 x^4+32 x^3+26 x^2+10 x+4$
- $y^2=10 x^6+6 x^5+2 x^4+25 x^3+25 x^2+22 x+1$
- $y^2=3 x^6+13 x^5+22 x^4+10 x^3+13 x^2+11 x+9$
- $y^2=2 x^6+13 x^5+29 x^4+8 x^3+5 x^2+34 x+28$
- $y^2=25 x^6+10 x^5+40 x^4+34 x^3+29 x^2+4 x+11$
- $y^2=16 x^6+29 x^5+12 x^4+21 x^3+11 x^2+5 x+14$
- $y^2=11 x^6+11 x^5+33 x^3+31 x^2+33 x$
- $y^2=40 x^6+13 x^5+6 x^4+10 x^3+24 x^2+21 x+10$
- $y^2=5 x^6+10 x^5+10 x^4+36 x^3+10 x^2+27 x+25$
- $y^2=9 x^6+5 x^5+14 x^4+3 x^3+14 x^2+15 x+14$
- $y^2=20 x^6+11 x^5+35 x^4+29 x^3+37 x^2+22 x+16$
- $y^2=6 x^6+11 x^5+16 x^4+10 x^3+22 x^2+28 x+6$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.62192.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.ai_bu | $2$ | (not in LMFDB) |