Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 124 x^{2} - 574 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.228506026664$, $\pm0.389569638973$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.8068928.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1218$ | $2915892$ | $4801513122$ | $7992354999888$ | $13422446649446898$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $1734$ | $69664$ | $2828390$ | $115854368$ | $4750091190$ | $194754579740$ | $7984925659198$ | $327381898079740$ | $13422658945926774$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=12 x^6+36 x^5+26 x^4+37 x^3+30 x^2+18 x+24$
- $y^2=24 x^6+40 x^5+8 x^4+3 x^3+17 x^2+40 x+17$
- $y^2=25 x^6+13 x^5+5 x^4+20 x^3+4 x^2+23 x+4$
- $y^2=28 x^6+11 x^5+22 x^4+5 x^3+12 x^2+36 x+24$
- $y^2=4 x^6+25 x^5+18 x^4+39 x^3+31 x^2+16 x+18$
- $y^2=35 x^6+12 x^5+11 x^4+38 x^3+36 x^2+34 x+2$
- $y^2=33 x^6+5 x^4+15 x^3+19 x^2+23 x+4$
- $y^2=26 x^6+32 x^5+38 x^4+18 x^3+38 x^2+3 x+17$
- $y^2=33 x^6+31 x^5+21 x^4+28 x^3+15 x^2+21 x+13$
- $y^2=26 x^6+28 x^5+34 x^4+9 x^3+32 x^2+17 x+6$
- $y^2=17 x^6+26 x^5+11 x^4+32 x^3+13 x^2+34 x+19$
- $y^2=29 x^6+22 x^5+10 x^4+18 x^3+39 x^2+12 x+34$
- $y^2=16 x^6+37 x^5+14 x^4+10 x^3+28 x^2+12$
- $y^2=28 x^6+19 x^5+38 x^4+4 x^3+35 x^2+4 x+32$
- $y^2=31 x^6+10 x^5+13 x^4+24 x^3+38 x^2+21 x+20$
- $y^2=17 x^6+9 x^5+11 x^4+26 x^3+2 x^2+31 x+18$
- $y^2=40 x^5+28 x^4+25 x^3+33 x^2+10 x+6$
- $y^2=38 x^6+15 x^5+17 x^4+12 x^3+11 x^2+38 x+19$
- $y^2=9 x^6+10 x^5+26 x^4+38 x^3+30 x^2+11 x+31$
- $y^2=3 x^6+8 x^5+16 x^4+15 x^3+35 x^2+7 x+36$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.8068928.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.o_eu | $2$ | (not in LMFDB) |