Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x + 85 x^{2} - 205 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.390929052305$, $\pm0.482661339481$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4020341.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $23$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1557$ | $3078189$ | $4787153757$ | $7973768489301$ | $13419519962188752$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $37$ | $1827$ | $69457$ | $2821811$ | $115829102$ | $4750170507$ | $194755199417$ | $7984925310403$ | $327381915269317$ | $13422659285963502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 23 curves (of which all are hyperelliptic):
- $y^2=25 x^6+17 x^5+33 x^4+32 x^3+19 x^2+6 x+19$
- $y^2=35 x^6+34 x^5+34 x^4+23 x^3+21 x^2+12 x+17$
- $y^2=10 x^6+5 x^5+15 x^4+38 x^3+25 x^2+13 x+31$
- $y^2=40 x^6+11 x^5+23 x^4+37 x^3+17 x^2+23 x+7$
- $y^2=40 x^6+10 x^5+39 x^4+15 x^3+39 x^2+24 x+20$
- $y^2=38 x^6+24 x^5+33 x^4+34 x^3+26 x^2+33 x+34$
- $y^2=20 x^6+24 x^5+21 x^4+16 x^3+12 x^2+38 x+27$
- $y^2=14 x^6+21 x^5+34 x^4+38 x^3+20 x^2+31 x+3$
- $y^2=24 x^6+4 x^5+31 x^4+2 x^3+13 x^2+22 x+8$
- $y^2=26 x^6+35 x^5+10 x^4+12 x^3+31 x^2+40 x+24$
- $y^2=17 x^6+33 x^5+30 x^4+34 x^3+3 x^2+31 x+40$
- $y^2=6 x^6+28 x^5+5 x^4+9 x^3+40 x^2+18 x+28$
- $y^2=31 x^6+18 x^5+32 x^4+4 x^3+3 x^2+24$
- $y^2=34 x^6+9 x^5+8 x^4+26 x^3+5 x^2+12 x+30$
- $y^2=4 x^6+29 x^5+2 x^4+10 x^3+9 x^2+39 x+4$
- $y^2=28 x^6+27 x^5+19 x^4+x^3+39 x^2+x+21$
- $y^2=30 x^6+19 x^5+27 x^4+25 x^3+36 x^2+25 x+40$
- $y^2=20 x^6+12 x^5+34 x^4+7 x^3+25 x^2+2 x+1$
- $y^2=16 x^6+40 x^5+20 x^4+40 x^3+33 x^2+8 x+33$
- $y^2=3 x^6+8 x^5+3 x^4+18 x^3+32 x^2+8 x+37$
- $y^2=26 x^6+25 x^5+30 x^4+23 x^3+40 x^2+10 x+34$
- $y^2=21 x^6+11 x^5+17 x^4+30 x^3+x^2+4 x+40$
- $y^2=37 x^6+3 x^5+3 x^4+16 x^3+8 x^2+x+21$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.4020341.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.f_dh | $2$ | (not in LMFDB) |