Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 7 x + 36 x^{2} + 259 x^{3} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.404683263006$, $\pm0.836131803525$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.48966012.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $60$ |
| Isomorphism classes: | 60 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1672$ | $1906080$ | $2584269952$ | $3513019804800$ | $4806459144016552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $45$ | $1393$ | $51018$ | $1874449$ | $69313305$ | $2565804886$ | $94931858661$ | $3512484304321$ | $129961728145986$ | $4808584176697993$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=16 x^6+17 x^5+11 x^4+3 x^3+5 x^2+7 x+23$
- $y^2=33 x^6+30 x^5+36 x^4+7 x^3+36 x^2+16 x+9$
- $y^2=21 x^6+5 x^5+36 x^4+x^3+34 x^2+13 x+1$
- $y^2=35 x^6+18 x^5+19 x^4+16 x^3+2 x^2+5 x+26$
- $y^2=22 x^6+16 x^5+30 x^3+8 x^2+17 x+16$
- $y^2=30 x^6+30 x^5+28 x^4+31 x^3+31 x^2+31 x+4$
- $y^2=34 x^6+19 x^5+33 x^4+29 x^3+27 x^2+18 x+3$
- $y^2=12 x^6+12 x^4+25 x^3+34 x^2+17 x+9$
- $y^2=11 x^6+27 x^5+17 x^4+19 x^3+7 x^2+32 x+36$
- $y^2=21 x^6+36 x^5+34 x^4+8 x^3+23 x^2+36 x+27$
- $y^2=14 x^6+10 x^5+14 x^4+11 x^3+21 x^2+9 x+33$
- $y^2=7 x^6+17 x^5+30 x^4+23 x^3+31 x^2+21 x+21$
- $y^2=33 x^6+4 x^5+28 x^4+6 x^3+17 x^2+15 x+5$
- $y^2=30 x^6+26 x^5+19 x^4+19 x^3+3 x^2+16 x+30$
- $y^2=7 x^6+x^5+18 x^4+27 x^3+17 x^2+7 x+18$
- $y^2=x^6+8 x^5+2 x^4+25 x^3+31 x^2+28 x+17$
- $y^2=16 x^6+25 x^5+18 x^4+28 x^3+36 x^2+3 x+10$
- $y^2=29 x^6+28 x^5+5 x^4+29 x^3+13 x^2+25 x+34$
- $y^2=10 x^6+27 x^5+13 x^4+24 x^3+12 x^2+10 x+17$
- $y^2=29 x^5+29 x^4+5 x^3+36 x^2+14 x+12$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is 4.0.48966012.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.ah_bk | $2$ | (not in LMFDB) |