Properties

Label 2.37.h_bk
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 7 x + 36 x^{2} + 259 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.404683263006$, $\pm0.836131803525$
Angle rank:  $2$ (numerical)
Number field:  4.0.48966012.1
Galois group:  $D_{4}$
Jacobians:  $60$
Isomorphism classes:  60
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1672$ $1906080$ $2584269952$ $3513019804800$ $4806459144016552$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $45$ $1393$ $51018$ $1874449$ $69313305$ $2565804886$ $94931858661$ $3512484304321$ $129961728145986$ $4808584176697993$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.48966012.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.ah_bk$2$(not in LMFDB)