Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x + 14 x^{2} + 31 x^{3} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.303486910678$, $\pm0.733144862957$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.5848093.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $70$ |
| Isomorphism classes: | 70 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1008$ | $951552$ | $889019712$ | $856019985408$ | $819459177698448$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $33$ | $989$ | $29844$ | $926905$ | $28623243$ | $887434670$ | $27512611005$ | $852888938833$ | $26439632120700$ | $819628372818149$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=12 x^6+x^5+24 x^4+29 x^3+24 x^2+17 x+6$
- $y^2=27 x^6+29 x^5+21 x^4+2 x^3+30 x^2+21 x+13$
- $y^2=24 x^5+5 x^4+17 x^3+4 x^2+19 x+21$
- $y^2=14 x^6+15 x^5+29 x^4+5 x^3+x^2+2 x+25$
- $y^2=x^6+26 x^5+3 x^4+21 x^3+8 x^2+16 x+30$
- $y^2=30 x^6+30 x^5+7 x^4+27 x^3+28 x^2+16 x+21$
- $y^2=x^6+9 x^5+17 x^4+10 x^3+14 x^2+12 x+13$
- $y^2=14 x^6+24 x^5+6 x^4+19 x^3+19 x^2+4 x+13$
- $y^2=9 x^6+28 x^5+11 x^4+4 x^3+23 x^2+16 x+21$
- $y^2=22 x^6+12 x^5+9 x^4+22 x^3+28 x^2+10 x+15$
- $y^2=13 x^5+x^3+11 x+11$
- $y^2=24 x^6+20 x^5+29 x^4+16 x^3+25 x^2+21 x+9$
- $y^2=25 x^6+29 x^5+21 x^4+12 x^3+25 x^2+13 x+17$
- $y^2=16 x^6+29 x^5+13 x^4+27 x^3+16 x^2+21 x+1$
- $y^2=15 x^5+17 x^4+12 x^3+6 x^2+20 x+20$
- $y^2=19 x^6+10 x^5+9 x^4+24 x^3+12 x^2+12 x$
- $y^2=28 x^6+x^5+22 x^4+8 x^3+30 x^2+27 x+10$
- $y^2=4 x^6+5 x^5+4 x^4+7 x^3+29 x^2+8 x$
- $y^2=7 x^6+26 x^5+11 x^4+4 x^3+15 x^2+28 x+2$
- $y^2=20 x^6+9 x^4+15 x^3+28 x^2+16 x+6$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is 4.0.5848093.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.ab_o | $2$ | (not in LMFDB) |