Properties

Label 2.3.ad_i
Base Field $\F_{3}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 3 x^{2} )( 1 - x + 3 x^{2} )$
Frobenius angles:  $\pm0.304086723985$, $\pm0.406785250661$
Angle rank:  $2$ (numerical)
Jacobians:  0

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 180 1368 7200 51546 492480 4773642 43574400 388496952 3487086900

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 17 46 89 211 674 2185 6641 19738 59057

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ac $\times$ 1.3.ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.ab_e$2$2.9.h_bc
2.3.b_e$2$2.9.h_bc
2.3.d_i$2$2.9.h_bc