Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x + 34 x^{2} + 174 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.417981724651$, $\pm0.801573262540$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.291852.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $132$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1056$ | $734976$ | $597925152$ | $500583333888$ | $420343198134816$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $874$ | $24516$ | $707758$ | $20493396$ | $594864826$ | $17250042132$ | $500246695774$ | $14507146350468$ | $420707157679114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=x^6+4 x^5+24 x^4+21 x^3+8 x^2+13 x+11$
- $y^2=24 x^6+28 x^5+2 x^4+17 x^3+10 x^2+12 x+10$
- $y^2=x^6+20 x^5+20 x^3+x^2+13 x+5$
- $y^2=27 x^6+2 x^5+13 x^3+17 x^2+13 x+13$
- $y^2=3 x^6+25 x^5+2 x^4+26 x^3+23 x^2+18 x+28$
- $y^2=20 x^6+17 x^5+16 x^4+10 x^3+24 x^2+8 x+24$
- $y^2=13 x^6+x^5+19 x^4+x^3+12 x^2+3 x+24$
- $y^2=13 x^6+9 x^5+4 x^4+19 x^3+20 x^2+23 x+13$
- $y^2=20 x^6+x^5+10 x^4+12 x^2+15 x+26$
- $y^2=14 x^6+14 x^5+19 x^4+10 x^3+23 x^2+x+20$
- $y^2=4 x^6+2 x^5+10 x^4+6 x^3+8 x^2+18 x+20$
- $y^2=11 x^6+27 x^4+27 x^3+20 x^2+3 x+21$
- $y^2=6 x^6+12 x^5+3 x^4+15 x^3+16 x^2+12 x+1$
- $y^2=8 x^6+12 x^5+19 x^4+13 x^3+25 x^2+9 x+4$
- $y^2=16 x^6+6 x^5+6 x^4+14 x^3+18 x^2+25 x+28$
- $y^2=3 x^6+25 x^5+25 x^3+15 x^2+21 x+1$
- $y^2=16 x^6+27 x^5+3 x^4+5 x^3+10 x^2+14 x+21$
- $y^2=9 x^6+16 x^5+5 x^4+8 x^3+26 x^2+16 x+20$
- $y^2=16 x^6+16 x^5+11 x^4+9 x^3+25 x^2+24 x+2$
- $y^2=12 x^6+5 x^5+2 x^4+5 x^3+15 x^2+23$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is 4.0.291852.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.ag_bi | $2$ | (not in LMFDB) |