Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x + 13 x^{2} + 29 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.303776799637$, $\pm0.734131802265$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6453917.1 |
Galois group: | $D_{4}$ |
Jacobians: | $77$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $885$ | $730125$ | $595991745$ | $502344253125$ | $420601357228800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $31$ | $867$ | $24439$ | $710243$ | $20505986$ | $594767547$ | $17249872139$ | $500244801763$ | $14507153601691$ | $420707293647702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 77 curves (of which all are hyperelliptic):
- $y^2=15 x^6+26 x^5+x^4+13 x^3+22 x^2+4 x+2$
- $y^2=5 x^6+5 x^5+27 x^4+27 x^3+11 x^2+5 x+17$
- $y^2=13 x^6+16 x^5+22 x^4+27 x^3+27 x^2+12 x+5$
- $y^2=9 x^6+16 x^5+2 x^4+24 x^3+23 x^2+11 x+26$
- $y^2=11 x^6+6 x^5+10 x^4+11 x^3+11 x^2+x+18$
- $y^2=28 x^6+x^5+22 x^4+9 x^3+11 x^2+25 x+1$
- $y^2=16 x^6+28 x^5+4 x^4+18 x^3+25 x^2+10 x+5$
- $y^2=17 x^6+19 x^5+21 x^4+x^3+16 x^2+22 x+4$
- $y^2=4 x^6+23 x^5+14 x^4+5 x^3+5 x^2+3 x$
- $y^2=20 x^5+5 x^4+22 x^3+9 x^2+23 x+6$
- $y^2=15 x^6+4 x^5+24 x^4+9 x^2+12 x+23$
- $y^2=2 x^6+13 x^5+4 x^4+18 x^3+18 x^2+6 x+20$
- $y^2=26 x^6+9 x^5+27 x^4+24 x^3+16 x^2+25 x+23$
- $y^2=9 x^5+10 x^4+x^3+18 x^2+7 x+6$
- $y^2=3 x^5+5 x^3+18 x^2+26 x+9$
- $y^2=11 x^6+16 x^5+19 x^4+5 x^3+3 x^2+27 x+1$
- $y^2=21 x^6+11 x^5+23 x^4+21 x^3+5 x^2+10 x+26$
- $y^2=13 x^6+15 x^5+26 x^4+15 x^3+5 x^2+17 x+25$
- $y^2=23 x^6+14 x^4+17 x^3+15 x^2+14 x+24$
- $y^2=12 x^6+3 x^5+13 x^4+15 x^3+7 x^2+15 x+1$
- and 57 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.6453917.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ab_n | $2$ | (not in LMFDB) |