Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 18 x + 136 x^{2} - 522 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0268446987164$, $\pm0.264224646566$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.7488.1 |
Galois group: | $D_{4}$ |
Jacobians: | $2$ |
Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $438$ | $664884$ | $593479926$ | $500293295568$ | $420636717101238$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $790$ | $24336$ | $707350$ | $20507712$ | $594767734$ | $17249424204$ | $500243983198$ | $14507137600956$ | $420707223749830$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=27 x^6+8 x^5+16 x^4+11 x^3+2 x^2+x+28$
- $y^2=19 x^5+16 x^4+22 x^3+27 x^2+8 x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.7488.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.s_fg | $2$ | (not in LMFDB) |