Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 29 x^{2} )( 1 - 6 x + 29 x^{2} )$ |
$1 - 15 x + 112 x^{2} - 435 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.185103371333$, $\pm0.311919362152$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $504$ | $707616$ | $603669024$ | $501912028800$ | $420853401410904$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $841$ | $24750$ | $709633$ | $20518275$ | $594824326$ | $17249813295$ | $500246477473$ | $14507148445830$ | $420707234868481$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=15 x^6+10 x^5+8 x^4+23 x^3+28 x^2+8 x+16$
- $y^2=12 x^6+23 x^5+x^4+10 x^3+22 x^2+2 x+21$
- $y^2=15 x^6+2 x^5+9 x^4+x^3+27 x^2+9 x+27$
- $y^2=21 x^6+6 x^5+16 x^4+3 x^3+6 x^2+5 x+2$
- $y^2=11 x^6+22 x^5+2 x^4+3 x^3+x^2+13 x+24$
- $y^2=18 x^6+18 x^5+19 x^4+6 x^3+7 x^2+9 x+18$
- $y^2=13 x^6+20 x^5+4 x^4+17 x^3+18 x^2+7 x+26$
- $y^2=19 x^6+27 x^5+25 x^4+17 x^3+15 x^2+3 x+25$
- $y^2=5 x^6+3 x^5+10 x^4+4 x^3+28 x^2+13 x+18$
- $y^2=10 x^6+4 x^5+20 x^4+28 x^3+21 x^2+5 x+18$
- $y^2=17 x^6+12 x^5+4 x^4+18 x^3+21 x^2+8 x+18$
- $y^2=10 x^6+10 x^5+7 x^4+5 x^3+4 x^2+9 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.aj $\times$ 1.29.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ad_e | $2$ | (not in LMFDB) |
2.29.d_e | $2$ | (not in LMFDB) |
2.29.p_ei | $2$ | (not in LMFDB) |