# Properties

 Label 2.256.acd_bwq Base Field $\F_{2^{8}}$ Dimension $2$ Ordinary No $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

# Learn more about

## Invariants

 Base field: $\F_{2^{8}}$ Dimension: $2$ L-polynomial: $1 - 55 x + 1264 x^{2} - 14080 x^{3} + 65536 x^{4}$ Frobenius angles: $\pm0.125067363196$, $\pm0.207496263663$ Angle rank: $2$ (numerical) Number field: 4.0.63869.1 Galois group: $D_{4}$

This isogeny class is simple and geometrically simple.

## Newton polygon

 $p$-rank: $1$ Slopes: $[0, 1/2, 1/2, 1]$

## Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 52666 4262575376 281474077892554 18447229100083951904 1208928994155963380141626 79228175984148871052894286896 5192296900052207453694194099922346 340282367003070684188708837123845926464 22300745198536194826875455890760405481625114 1461501637330193672582505413593870250587671344976

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 202 65040 16777162 4295080224 1099514515002 281475024565296 72057594614097322 18446744078161948224 4722366482870825063962 1208925819614042500478800

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{8}}$
 The endomorphism algebra of this simple isogeny class is 4.0.63869.1.
All geometric endomorphisms are defined over $\F_{2^{8}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.256.cd_bwq $2$ (not in LMFDB)