Properties

Label 2.25.ac_bz
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - x + 25 x^{2} )^{2}$
  $1 - 2 x + 51 x^{2} - 50 x^{3} + 625 x^{4}$
Frobenius angles:  $\pm0.468115719571$, $\pm0.468115719571$
Angle rank:  $1$ (numerical)
Jacobians:  $16$

This isogeny class is not simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $625$ $455625$ $246490000$ $151690775625$ $95308846890625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $24$ $724$ $15774$ $388324$ $9759624$ $244192174$ $6103717224$ $152586803524$ $3814691138574$ $95367452691124$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5^{2}}$
The isogeny class factors as 1.25.ab 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{5^{2}}$.

SubfieldPrimitive Model
$\F_{5}$2.5.a_ab

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_bx$2$2.625.du_fkl
2.25.c_bz$2$2.625.du_fkl
2.25.b_ay$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_bx$2$2.625.du_fkl
2.25.c_bz$2$2.625.du_fkl
2.25.b_ay$3$(not in LMFDB)
2.25.a_abx$4$(not in LMFDB)
2.25.ab_ay$6$(not in LMFDB)