Properties

Label 2.25.a_az
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $1 - 25 x^{2} + 625 x^{4}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\zeta_{12})\)
Galois group:  $C_2^2$
Jacobians:  $8$
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $601$ $361201$ $244171876$ $153077345001$ $95367421875001$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $576$ $15626$ $391876$ $9765626$ $244203126$ $6103515626$ $152588671876$ $3814697265626$ $95367412109376$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{12}}$.

Endomorphism algebra over $\F_{5^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\).
Endomorphism algebra over $\overline{\F}_{5^{2}}$
The base change of $A$ to $\F_{5^{12}}$ is 1.244140625.bufy 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $5$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_by$3$(not in LMFDB)
2.25.ak_cx$4$(not in LMFDB)
2.25.a_z$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.a_by$3$(not in LMFDB)
2.25.ak_cx$4$(not in LMFDB)
2.25.a_z$4$(not in LMFDB)
2.25.k_cx$4$(not in LMFDB)
2.25.au_fu$12$(not in LMFDB)
2.25.ap_dw$12$(not in LMFDB)
2.25.af_a$12$(not in LMFDB)
2.25.a_aby$12$(not in LMFDB)
2.25.f_a$12$(not in LMFDB)
2.25.p_dw$12$(not in LMFDB)
2.25.u_fu$12$(not in LMFDB)
2.25.a_a$24$(not in LMFDB)
2.25.af_z$60$(not in LMFDB)
2.25.f_z$60$(not in LMFDB)