Properties

Label 2.23.c_ai
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 + 2 x - 8 x^{2} + 46 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.266750468722$, $\pm0.840756633373$
Angle rank:  $2$ (numerical)
Number field:  4.0.52078400.1
Galois group:  $D_{4}$
Jacobians:  $28$
Isomorphism classes:  56
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $570$ $270180$ $150423570$ $78725048400$ $41416614689250$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $510$ $12362$ $281318$ $6434806$ $148052430$ $3404609542$ $78310839358$ $1801151278826$ $41426513993550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 4.0.52078400.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ac_ai$2$(not in LMFDB)