Properties

Label 2.23.ao_dq
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 23 x^{2} )( 1 - 6 x + 23 x^{2} )$
  $1 - 14 x + 94 x^{2} - 322 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.186011988595$, $\pm0.284877382774$
Angle rank:  $2$ (numerical)
Jacobians:  $8$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $288$ $276480$ $150964128$ $78785740800$ $41466087769248$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $522$ $12406$ $281534$ $6442490$ $148043754$ $3404776742$ $78310648126$ $1801151800618$ $41426511011082$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The isogeny class factors as 1.23.ai $\times$ 1.23.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ac_ac$2$(not in LMFDB)
2.23.c_ac$2$(not in LMFDB)
2.23.o_dq$2$(not in LMFDB)