Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 12 x + 72 x^{2} - 276 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.0956038575290$, $\pm0.404396142471$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{10})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $7$ |
| Isomorphism classes: | 14 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $314$ | $279460$ | $148474586$ | $78097891600$ | $41391692364794$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $12$ | $530$ | $12204$ | $279078$ | $6430932$ | $148035890$ | $3404985204$ | $78311812798$ | $1801153952172$ | $41426511213650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 7 curves (of which all are hyperelliptic):
- $y^2=13 x^6+5 x^5+21 x^4+21 x^2+18 x+13$
- $y^2=10 x^6+13 x^5+19 x^4+5 x^3+19 x^2+11 x+7$
- $y^2=9 x^6+14 x^5+13 x^4+15 x^3+9 x^2+16 x+21$
- $y^2=4 x^6+17 x^5+17 x^4+7 x^2+12 x+9$
- $y^2=9 x^6+6 x^5+20 x^4+16 x^3+18 x^2+18 x+14$
- $y^2=7 x^6+19 x^5+10 x^4+6 x^3+10 x^2+9 x+18$
- $y^2=16 x^6+17 x^5+20 x^3+16 x^2+6 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{4}}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{10})\). |
| The base change of $A$ to $\F_{23^{4}}$ is 1.279841.aos 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
- Endomorphism algebra over $\F_{23^{2}}$
The base change of $A$ to $\F_{23^{2}}$ is the simple isogeny class 2.529.a_aos and its endomorphism algebra is \(\Q(i, \sqrt{10})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.m_cu | $2$ | (not in LMFDB) |
| 2.23.a_aba | $8$ | (not in LMFDB) |
| 2.23.a_ba | $8$ | (not in LMFDB) |