Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 3 x + 38 x^{2} - 69 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.336934056371$, $\pm0.556768668222$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2617317.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $44$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $496$ | $317440$ | $149349568$ | $78223564800$ | $41434024318096$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $21$ | $597$ | $12276$ | $279529$ | $6437511$ | $148023294$ | $3404664585$ | $78311227441$ | $1801158014268$ | $41426513633757$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=22 x^6+21 x^5+8 x^4+20 x^2+18 x+9$
- $y^2=3 x^6+20 x^5+4 x^3+x^2+21 x+6$
- $y^2=19 x^6+4 x^5+14 x^4+15 x^3+22 x^2+6 x+8$
- $y^2=7 x^6+19 x^5+13 x^4+15 x^3+10 x^2+20 x+8$
- $y^2=11 x^6+7 x^5+21 x^4+x^3+6 x^2+10 x+22$
- $y^2=19 x^6+12 x^5+14 x^4+15 x^3+17 x^2+14 x+1$
- $y^2=12 x^6+2 x^5+7 x^3+2 x+22$
- $y^2=15 x^6+19 x^5+15 x^4+13 x^3+3 x^2+21 x+21$
- $y^2=7 x^6+5 x^5+11 x^4+4 x^3+8 x^2+10 x+19$
- $y^2=21 x^6+14 x^5+21 x^4+14 x^3+2 x^2+18 x+12$
- $y^2=22 x^6+4 x^5+18 x^4+18 x^3+8 x^2+7 x+4$
- $y^2=9 x^6+9 x^4+6 x^3+19 x^2+18 x+2$
- $y^2=11 x^6+13 x^5+14 x^4+11 x^3+18 x^2+3 x+10$
- $y^2=16 x^6+7 x^5+14 x^4+2 x^3+6 x^2+13 x+2$
- $y^2=15 x^6+8 x^5+14 x^4+21 x^3+14 x^2+x+4$
- $y^2=2 x^6+15 x^5+6 x^4+14 x^3+4 x^2+5 x$
- $y^2=3 x^6+18 x^5+12 x^4+15 x^3+10 x^2+16 x+5$
- $y^2=12 x^6+9 x^5+21 x^4+15 x^3+8 x^2+14 x$
- $y^2=17 x^5+20 x^4+15 x^3+x^2+22 x+1$
- $y^2=3 x^5+22 x^4+5 x^3+14 x^2+8$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 4.0.2617317.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.d_bm | $2$ | (not in LMFDB) |