Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5 x + 34 x^{2} + 95 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.474356379535$, $\pm0.726916281199$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1380101.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $496$ | $146816$ | $46368064$ | $16984262144$ | $6124820650576$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $25$ | $405$ | $6760$ | $130329$ | $2473575$ | $47052246$ | $893961205$ | $16983136689$ | $322687094680$ | $6131072972725$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=11 x^5+3 x^4+14 x^2+15 x+2$
- $y^2=6 x^6+17 x^5+12 x^4+x^3+18 x^2+11 x+17$
- $y^2=9 x^5+7 x^4+16 x^3+18 x^2+10 x+6$
- $y^2=17 x^6+13 x^5+7 x^4+16 x^3+6 x^2+3 x$
- $y^2=3 x^6+17 x^5+12 x^4+8 x^3+10 x^2+17 x+9$
- $y^2=4 x^5+8 x^3+9 x^2+x+4$
- $y^2=9 x^6+x^5+16 x^4+11 x^3+9 x^2+3 x+5$
- $y^2=11 x^6+10 x^5+4 x^4+15 x^3+18 x^2+18 x+6$
- $y^2=9 x^6+7 x^5+7 x^4+18 x^3+10 x^2+x+5$
- $y^2=5 x^6+4 x^5+15 x^4+18 x^3+x^2+7$
- $y^2=13 x^6+15 x^5+17 x^4+6 x^3+13 x^2+8 x+10$
- $y^2=9 x^5+9 x^4+13 x^3+11 x^2+18 x+17$
- $y^2=13 x^6+3 x^5+16 x^4+16 x^3+x^2+12$
- $y^2=4 x^5+11 x^4+18 x^3+12 x^2+x+4$
- $y^2=12 x^6+14 x^5+4 x^4+15 x^3+x^2+13 x+4$
- $y^2=6 x^6+7 x^5+8 x^4+18 x^3+6 x^2+13 x+17$
- $y^2=3 x^6+9 x^5+15 x^4+13 x^3+18 x^2+8$
- $y^2=15 x^6+11 x^5+10 x^4+x^3+6 x^2+6 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is 4.0.1380101.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.af_bi | $2$ | (not in LMFDB) |