Properties

Label 2.19.d_w
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $1 + 3 x + 22 x^{2} + 57 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.396998728199$, $\pm0.730332061532$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{73})\)
Galois group:  $C_2^2$
Jacobians:  $36$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $444$ $143856$ $47040912$ $17049237696$ $6119717876724$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $397$ $6860$ $130825$ $2471513$ $47035942$ $893973803$ $16983555409$ $322687697780$ $6131064196477$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19^{6}}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{73})\).
Endomorphism algebra over $\overline{\F}_{19}$
The base change of $A$ to $\F_{19^{6}}$ is 1.47045881.ahje 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.ad_w$2$(not in LMFDB)
2.19.ad_w$3$(not in LMFDB)
2.19.a_abj$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.ad_w$2$(not in LMFDB)
2.19.ad_w$3$(not in LMFDB)
2.19.a_abj$3$(not in LMFDB)
2.19.a_abj$6$(not in LMFDB)
2.19.a_bj$12$(not in LMFDB)