Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 22 x^{2} + 57 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.396998728199$, $\pm0.730332061532$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{73})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $36$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $444$ | $143856$ | $47040912$ | $17049237696$ | $6119717876724$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $23$ | $397$ | $6860$ | $130825$ | $2471513$ | $47035942$ | $893973803$ | $16983555409$ | $322687697780$ | $6131064196477$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=14 x^6+7 x^5+10 x^4+3 x^2+13 x+17$
- $y^2=10 x^6+17 x^5+18 x^4+14 x^3+2 x^2+17 x$
- $y^2=14 x^6+9 x^5+14 x^4+17 x^3+13 x^2+12 x+4$
- $y^2=16 x^6+2 x^5+4 x^4+16 x^3+17 x^2+3 x+6$
- $y^2=x^6+15 x^5+x^4+9 x^3+17 x^2+10 x+9$
- $y^2=14 x^6+8 x^5+18 x^4+3 x^3+14 x+1$
- $y^2=18 x^6+9 x^5+17 x^4+5 x^3+16 x^2+9 x+18$
- $y^2=12 x^6+x^5+9 x^4+12 x^3+7 x^2+17 x$
- $y^2=2 x^6+15 x^5+12 x^4+14 x^3+16 x^2+14 x+12$
- $y^2=4 x^6+15 x^5+5 x^4+17 x^2+6 x$
- $y^2=2 x^6+2 x^3+11$
- $y^2=17 x^6+5 x^5+17 x^4+14 x^3+10 x^2+5 x+18$
- $y^2=6 x^6+11 x^5+6 x^4+9 x^3+3 x^2+15 x+17$
- $y^2=4 x^6+9 x^5+11 x^4+14 x^3+5 x^2+10 x+6$
- $y^2=13 x^6+7 x^5+9 x^4+11 x^3+3 x+5$
- $y^2=5 x^6+4 x^5+17 x^4+7 x^3+16 x+11$
- $y^2=9 x^6+3 x^5+13 x^4+x^3+4 x^2+5 x+4$
- $y^2=17 x^6+4 x^5+5 x^4+8 x^3+14 x^2+11$
- $y^2=18 x^5+7 x^4+7 x^3+2 x^2+8 x+3$
- $y^2=17 x^6+4 x^5+3 x^4+5 x^3+13 x^2+8 x+16$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{6}}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{73})\). |
| The base change of $A$ to $\F_{19^{6}}$ is 1.47045881.ahje 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$ |
- Endomorphism algebra over $\F_{19^{2}}$
The base change of $A$ to $\F_{19^{2}}$ is the simple isogeny class 2.361.bj_bhg and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{73})\). - Endomorphism algebra over $\F_{19^{3}}$
The base change of $A$ to $\F_{19^{3}}$ is the simple isogeny class 2.6859.a_ahje and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{73})\).
Base change
This is a primitive isogeny class.