Properties

Label 2.19.al_cl
Base Field $\F_{19}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $1 - 11 x + 63 x^{2} - 209 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.148084750558$, $\pm0.380020549717$
Angle rank:  $2$ (numerical)
Number field:  4.0.443205.2
Galois group:  $D_{4}$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 205 132225 47885335 17004796125 6128994732400 2213509905722025 799085556480660115 288449507361741091125 104127625137960514438945 37589950708235677119840000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 9 367 6981 130483 2475264 47050027 893959971 16984039603 322688549499 6131062547302

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 4.0.443205.2.
All geometric endomorphisms are defined over $\F_{19}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.19.l_cl$2$(not in LMFDB)