Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x + 50 x^{2} - 190 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.0511346671405$, $\pm0.448865332859$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{13})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 11 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $212$ | $129744$ | $46568132$ | $16833505536$ | $6120057514052$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $362$ | $6790$ | $129166$ | $2471650$ | $47045882$ | $893899870$ | $16983416158$ | $322686428890$ | $6131066257802$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=17 x^6+16 x^5+4 x^4+10 x^3+13 x^2+3 x+12$
- $y^2=10 x^6+15 x^5+2 x^4+13 x^3+16 x^2+12 x+8$
- $y^2=9 x^6+14 x^5+x^4+11 x^3+x^2+2 x+2$
- $y^2=12 x^5+2 x^4+6 x^3+x^2+2 x+6$
- $y^2=3 x^6+18 x^5+17 x^4+9 x^3+8 x^2+10 x+13$
- $y^2=8 x^5+3 x^4+11 x^3+3 x^2+9 x+16$
- $y^2=13 x^6+9 x^5+15 x^4+12 x^3+15 x^2+4 x+9$
- $y^2=5 x^5+16 x^4+16 x^2+14 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{4}}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{13})\). |
| The base change of $A$ to $\F_{19^{4}}$ is 1.130321.awg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
- Endomorphism algebra over $\F_{19^{2}}$
The base change of $A$ to $\F_{19^{2}}$ is the simple isogeny class 2.361.a_awg and its endomorphism algebra is \(\Q(i, \sqrt{13})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.k_by | $2$ | (not in LMFDB) |
| 2.19.a_am | $8$ | (not in LMFDB) |
| 2.19.a_m | $8$ | (not in LMFDB) |