Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x + 26 x^{2} - 95 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.216840639262$, $\pm0.565154497481$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.325069.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $30$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $288$ | $140544$ | $46915200$ | $17005261824$ | $6145255045728$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $15$ | $389$ | $6840$ | $130489$ | $2481825$ | $47058518$ | $893809155$ | $16983405169$ | $322687669320$ | $6131059713029$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=6 x^6+x^5+13 x^4+18 x^2+6 x+2$
- $y^2=5 x^6+6 x^5+13 x^4+18 x^3+9 x^2+12 x+15$
- $y^2=15 x^6+8 x^5+13 x^4+6 x^3+12 x^2+18 x+11$
- $y^2=2 x^5+15 x^4+18 x^3+4 x^2+15 x+3$
- $y^2=13 x^6+x^5+5 x^4+14 x^3+7 x^2+14$
- $y^2=14 x^6+6 x^5+13 x^4+17 x^3+9 x^2+3 x+13$
- $y^2=9 x^5+4 x^4+4 x^3+6 x^2+7 x+3$
- $y^2=15 x^5+14 x^4+10 x^3+6 x^2+11 x+4$
- $y^2=4 x^6+15 x^5+2 x^4+7 x^3+10 x^2+10 x+12$
- $y^2=x^6+13 x^4+7 x^3+4 x^2+18 x+10$
- $y^2=10 x^6+10 x^5+3 x^4+4 x^3+13 x^2+15 x+10$
- $y^2=11 x^6+12 x^5+14 x^4+12 x^3+8 x^2+16 x+13$
- $y^2=7 x^6+14 x^5+2 x^4+13 x^3+2 x^2+17 x+3$
- $y^2=7 x^6+15 x^5+11 x^4+13 x^3+8 x^2+11 x+10$
- $y^2=3 x^6+18 x^5+5 x^4+2 x^3+x^2+2 x+16$
- $y^2=13 x^6+16 x^5+8 x^4+14 x^3+7 x^2+13 x+17$
- $y^2=10 x^6+5 x^5+13 x^4+4 x^3+8 x^2+15 x+15$
- $y^2=15 x^6+6 x^5+5 x^4+4 x^3+8 x^2+14 x$
- $y^2=14 x^6+2 x^5+8 x^3+18 x^2+3 x+17$
- $y^2=16 x^5+8 x^4+7 x^3+10 x^2+7 x$
- $y^2=13 x^6+2 x^5+3 x^4+14 x^3+13 x^2+12 x+8$
- $y^2=13 x^6+12 x^5+x^4+2 x^3+16 x^2+9 x$
- $y^2=11 x^6+15 x^5+18 x^3+3 x^2+14 x+14$
- $y^2=6 x^5+8 x^4+13 x^3+3 x^2+3$
- $y^2=4 x^6+4 x^5+6 x^4+8 x^3+9 x^2+x+12$
- $y^2=7 x^6+4 x^5+16 x^4+14 x^3+2 x^2+11$
- $y^2=6 x^6+13 x^5+6 x^4+8 x^3+12 x^2+7 x+15$
- $y^2=4 x^6+x^5+2 x^4+16 x^3+16 x^2+15 x+3$
- $y^2=9 x^6+12 x^5+12 x^3+4 x^2+x+8$
- $y^2=14 x^6+16 x^5+3 x^4+16 x^3+18 x^2+x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is 4.0.325069.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.f_ba | $2$ | (not in LMFDB) |