Properties

Label 2.19.ab_ag
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $1 - x - 6 x^{2} - 19 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.193751700064$, $\pm0.749363096456$
Angle rank:  $2$ (numerical)
Number field:  4.0.7424973.1
Galois group:  $D_{4}$
Jacobians:  $32$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $336$ $126336$ $46533312$ $17149859328$ $6133364607216$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $19$ $349$ $6784$ $131593$ $2477029$ $47057686$ $893940703$ $16983261649$ $322687699072$ $6131061499789$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 4.0.7424973.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.b_ag$2$(not in LMFDB)