Invariants
| Base field: | $\F_{19}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - x - 6 x^{2} - 19 x^{3} + 361 x^{4}$ | 
| Frobenius angles: | $\pm0.193751700064$, $\pm0.749363096456$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.7424973.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $32$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $336$ | $126336$ | $46533312$ | $17149859328$ | $6133364607216$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $19$ | $349$ | $6784$ | $131593$ | $2477029$ | $47057686$ | $893940703$ | $16983261649$ | $322687699072$ | $6131061499789$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=2 x^6+2 x^4+4 x^3+16 x^2+13 x+8$
- $y^2=10 x^5+16 x^4+9 x^3+6 x^2+13 x+3$
- $y^2=6 x^6+13 x^5+17 x^4+5 x^3+14 x^2+4 x+2$
- $y^2=18 x^6+13 x^5+15 x^4+13 x^3+17 x^2+15$
- $y^2=4 x^6+8 x^5+11 x^4+7 x^3+13 x^2+9 x+10$
- $y^2=5 x^6+11 x^5+2 x^4+14 x^3+16 x^2+16 x+5$
- $y^2=8 x^6+x^5+10 x^4+12 x^3+13 x^2+17 x+9$
- $y^2=x^6+15 x^5+18 x^4+17 x^3+12 x^2+16 x+12$
- $y^2=18 x^6+3 x^5+4 x^4+3 x^3+17 x^2+11 x+17$
- $y^2=12 x^6+7 x^5+11 x^4+6 x^3+5 x+16$
- $y^2=16 x^6+6 x^5+11 x^4+7 x^3+18 x^2+10 x+3$
- $y^2=18 x^6+4 x^5+17 x^4+12 x^3+12 x^2+4$
- $y^2=4 x^6+3 x^5+x^4+15 x^3+2 x^2+10 x+3$
- $y^2=8 x^6+13 x^5+4 x^4+6 x^3+9 x^2+13 x+8$
- $y^2=16 x^5+2 x^4+12 x^3+4 x^2+14 x+14$
- $y^2=8 x^6+6 x^5+2 x^4+15 x^3+18 x^2+9 x+9$
- $y^2=13 x^6+10 x^5+5 x^3+2 x^2+13 x+2$
- $y^2=14 x^6+18 x^5+3 x^4+5 x^3+17 x^2+x$
- $y^2=6 x^6+18 x^5+2 x^4+13 x^3+10 x^2+15 x+7$
- $y^2=x^6+5 x^5+6 x^4+13 x^3+17 x^2+11 x+1$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is 4.0.7424973.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.19.b_ag | $2$ | (not in LMFDB) | 
