| Label | Dimension | Base field | Base char. | Simple | Geom. simple | Primitive | Ordinary | Almost ordinary | Supersingular | Princ. polarizable | Jacobian | L-polynomial | Newton slopes | Newton elevation | $p$-rank | $p$-corank | Angle rank | Angle corank | $\mathbb{F}_q$ points on curve | $\mathbb{F}_{q^k}$ points on curve | $\mathbb{F}_q$ points on variety | $\mathbb{F}_{q^k}$ points on variety | Jacobians | Hyperelliptic Jacobians | Num. twists | Max. twist degree | End. degree | Number fields | Galois groups | Isogeny factors | 
      
      
              | 2.19.aq_dy | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )^{2}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $4$ | $[4, 310, 6748, 130414, 2478964, 47067046, 893986636, 16984080094, 322689651172, 6131072060950]$ | $144$ | $[144, 112896, 46294416, 16995815424, 6138164811024, 2214310804183296, 799109393158339344, 288450195053661978624, 104127980635077893874576, 37590009037051531288709376]$ | $1$ | $1$ | $24$ | $12$ | $1$ | \(\Q(\sqrt{-3}) \) | $C_2$ | 1.19.ai 2 | 
      
              | 2.19.ap_dp | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 15 x + 93 x^{2} - 285 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $5$ | $[5, 323, 6815, 130443, 2476400, 47040383, 893812085, 16983221443, 322686446195, 6131064236198]$ | $155$ | $[155, 117025, 46735445, 16999168525, 6131808122000, 2213056283091025, 798953364541302545, 288435612056346033525, 104126946427712916323255, 37589961062970636364000000]$ | $1$ | $1$ | $2$ | $2$ | $1$ | 4.0.1525.1 | $D_{4}$ | simple | 
      
              | 2.19.ap_dq | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ |  | $( 1 - 8 x + 19 x^{2} )( 1 - 7 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $5$ | $[5, 325, 6860, 130969, 2480675, 47067046, 893943545, 16983721009, 322687697780, 6131064233125]$ | $156$ | $[156, 117936, 47056464, 17068169664, 6142403868276, 2214310804183296, 799070872855699236, 288444096418094233344, 104127350297602681851984, 37589961044115088796272176]$ | $0$ | $0$ | $24$ | $12$ | $6$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ah | 
      
              | 2.19.ao_dh | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 14 x + 85 x^{2} - 266 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $6$ | $[6, 336, 6888, 130644, 2476366, 47039070, 893829306, 16983502500, 322688549064, 6131074493536]$ | $167$ | $[167, 121409, 47234948, 17025548297, 6131729053647, 2212994534939024, 798968756034428951, 288440385356155507913, 104127624997453294352996, 37590023951405955004876209]$ | $1$ | $1$ | $2$ | $2$ | $1$ | 4.0.14912.2 | $D_{4}$ | simple | 
      
              | 2.19.ao_di | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - 6 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $6$ | $[6, 338, 6930, 131086, 2479446, 47054306, 893879874, 16983566686, 322688082150, 6131070448178]$ | $168$ | $[168, 122304, 47532744, 17083422720, 6139358981448, 2213711304831936, 799013955490370088, 288441475423798394880, 104127474329448490192104, 37589999149034860983559104]$ | $4$ | $4$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-10}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ag | 
      
              | 2.19.ao_dj | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 7 x + 19 x^{2} )^{2}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $6$ | $[6, 340, 6972, 131524, 2482386, 47067046, 893900454, 16983361924, 322685744388, 6131056405300]$ | $169$ | $[169, 123201, 47831056, 17140831929, 6146645853049, 2214310804183296, 799032354409893409, 288437997911468525289, 104126719963943210135056, 37589913051239921148065601]$ | $2$ | $2$ | $24$ | $12$ | $1$ | \(\Q(\sqrt{-3}) \) | $C_2$ | 1.19.ah 2 | 
      
              | 2.19.an_cy | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ |  | ✓ |  | ✓ | ✓ | $1 - 13 x + 76 x^{2} - 247 x^{3} + 361 x^{4}$ | $[0,\frac{1}{2},\frac{1}{2},1]$ | $1$ | $1$ | $1$ | $2$ | $0$ | $7$ | $[7, 345, 6886, 130185, 2472837, 47026434, 893823679, 16983659793, 322688982466, 6131070755305]$ | $178$ | $[178, 124244, 47214856, 16965766688, 6122994315838, 2212400143668416, 798963727685986222, 288443056776740398208, 104127764851098169084072, 37590001032051721372609044]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.43928.1 | $D_{4}$ | simple | 
      
              | 2.19.an_cz | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 13 x + 77 x^{2} - 247 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $7$ | $[7, 347, 6925, 130555, 2475112, 47036567, 893860807, 16983810019, 322689806185, 6131075312102]$ | $179$ | $[179, 125121, 47489237, 17014078701, 6128624886224, 2212876729285569, 798996913370243249, 288445608159578024949, 104128030656023260494527, 37590028970091756735864576]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.64389.1 | $D_{4}$ | simple | 
      
              | 2.19.an_da | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - 5 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $7$ | $[7, 349, 6964, 130921, 2477257, 47044582, 893875003, 16983776401, 322689478156, 6131074035949]$ | $180$ | $[180, 126000, 47764080, 17061912000, 6133935663900, 2213253727776000, 799009601161295340, 288445037185938528000, 104127924804774190734960, 37590021145906989987150000]$ | $4$ | $4$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-51}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.af | 
      
              | 2.19.an_db | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 13 x + 79 x^{2} - 247 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $7$ | $[7, 351, 7003, 131283, 2479272, 47050491, 893866813, 16983571443, 322688189557, 6131069106406]$ | $181$ | $[181, 126881, 48039391, 17109268445, 6138926902096, 2213531724084521, 799002280193961451, 288441556256912702645, 104127508988997935788441, 37589990922529927848066816]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.21125.1 | $C_4$ | simple | 
      
              | 2.19.an_dc | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ |  | $( 1 - 7 x + 19 x^{2} )( 1 - 6 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $7$ | $[7, 353, 7042, 131641, 2481157, 47054306, 893836783, 16983207601, 322686128758, 6131062620353]$ | $182$ | $[182, 127764, 48315176, 17156149920, 6143598863402, 2213711304831936, 798975439788211322, 288435376972587761280, 104126843995038193192136, 37589951156111042988102804]$ | $0$ | $0$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-10}) \) | $C_2$, $C_2$ | 1.19.ah $\times$ 1.19.ag | 
      
              | 2.19.am_cp | $2$ | $\F_{19}$ | $19$ | ✓ |  | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 12 x + 67 x^{2} - 228 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $8$ | $[8, 352, 6860, 129700, 2470688, 47026222, 893856608, 16983689284, 322687697780, 6131061446752]$ | $189$ | $[189, 126441, 47036052, 16902759321, 6117677843949, 2212390187746704, 798993160685911989, 288443557605540195369, 104127350298348762476532, 37589943960696653730888201]$ | $4$ | $4$ | $4$ | $12$ | $6$ | \(\Q(\sqrt{-3}, \sqrt{7})\) | $C_2^2$ | simple | 
      
              | 2.19.am_cq | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 12 x + 68 x^{2} - 228 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $8$ | $[8, 354, 6896, 130006, 2472368, 47033682, 893894072, 16983923806, 322689074024, 6131067736674]$ | $190$ | $[190, 127300, 47287390, 16942611600, 6121833155950, 2212741065343300, 799026649637951470, 288447540686741606400, 104127794396037832168030, 37589982524610807362282500]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.168192.4 | $D_{4}$ | simple | 
      
              | 2.19.am_cr | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 12 x + 69 x^{2} - 228 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $8$ | $[8, 356, 6932, 130308, 2473928, 47039366, 893914232, 16984032388, 322689696428, 6131069897156]$ | $191$ | $[191, 128161, 47539136, 16981973305, 6125692347071, 2213008391520256, 799044670009668791, 288449384824034140905, 104127995238661094476736, 37589995770672827115745441]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.12625.1 | $D_{4}$ | simple | 
      
              | 2.19.am_cs | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - 4 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $8$ | $[8, 358, 6968, 130606, 2475368, 47043286, 893917592, 16984025566, 322689710792, 6131069428678]$ | $192$ | $[192, 129024, 47791296, 17020846080, 6129255605952, 2213192742598656, 799047672711483072, 288449268959839518720, 104127999873776666133696, 37589992898409852999727104]$ | $12$ | $12$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ae | 
      
              | 2.19.am_ct | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 12 x + 71 x^{2} - 228 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $8$ | $[8, 360, 7004, 130900, 2476688, 47045454, 893904656, 16983913828, 322689260324, 6131067761880]$ | $193$ | $[193, 129889, 48043876, 17059231593, 6132523129513, 2213294696167696, 799036108767783457, 288447371227918952073, 104127854512771789161412, 37589982679159238495800369]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.134928.2 | $D_{4}$ | simple | 
      
              | 2.19.am_cu | $2$ | $\F_{19}$ | $19$ | ✓ |  | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 12 x + 72 x^{2} - 228 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $8$ | $[8, 362, 7040, 131190, 2477888, 47045882, 893875928, 16983707614, 322688485640, 6131066257802]$ | $194$ | $[194, 130756, 48296882, 17097131536, 6135495123074, 2213314831134724, 799010429326500914, 288443868954489667584, 104127604530951176173442, 37589973457544943538923076]$ | $5$ | $5$ | $8$ | $24$ | $4$ | \(\Q(\zeta_{8})\) | $C_2^2$ | simple | 
      
              | 2.19.am_cv | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 7 x + 19 x^{2} )( 1 - 5 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $8$ | $[8, 364, 7076, 131476, 2478968, 47044582, 893831912, 16983417316, 322687524764, 6131066208124]$ | $195$ | $[195, 131625, 48550320, 17134547625, 6138171800475, 2213253727776000, 798971085669032835, 288438938659422383625, 104127294467636946782640, 37589973152955087548165625]$ | $8$ | $8$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-51}) \) | $C_2$, $C_2$ | 1.19.ah $\times$ 1.19.af | 
      
              | 2.19.am_cw | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 6 x + 19 x^{2} )^{2}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $8$ | $[8, 366, 7112, 131758, 2479928, 47041566, 893773112, 16983053278, 322686513128, 6131068835406]$ | $196$ | $[196, 132496, 48804196, 17171481600, 6140553384196, 2213111967788176, 798918529220525476, 288432756057522585600, 104126968026280916546116, 37589989261020791711932816]$ | $4$ | $4$ | $6$ | $6$ | $1$ | \(\Q(\sqrt{-10}) \) | $C_2$ | 1.19.ag 2 | 
      
              | 2.19.al_cg | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 58 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 357, 6816, 129273, 2470039, 47032662, 893874501, 16983472113, 322685962464, 6131057792677]$ | $200$ | $[200, 128000, 46738400, 16847360000, 6116072751000, 2212693071872000, 799009152438764600, 288439869271132160000, 104126790334174227960800, 37589921557333848835200000]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.8405.1 | $D_{4}$ | simple | 
      
              | 2.19.al_ch | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 59 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 359, 6849, 129523, 2471304, 47039051, 893916543, 16983744979, 322687359387, 6131063631014]$ | $201$ | $[201, 128841, 46967067, 16879845933, 6119201069616, 2212993652334129, 799046735188015263, 288444503541941961237, 104127241103131388139333, 37589957352536821973926656]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.291597.2 | $D_{4}$ | simple | 
      
              | 2.19.al_ci | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 60 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 361, 6882, 129769, 2472459, 47043970, 893945649, 16983929425, 322688208246, 6131066027161]$ | $202$ | $[202, 129684, 47196088, 16911831072, 6122057290822, 2213225055301824, 799072753925610646, 288447636123620162688, 104127515019253716936856, 37589972043459737592720084]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.444312.2 | $D_{4}$ | simple | 
      
              | 2.19.al_cj | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 61 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 363, 6915, 130011, 2473504, 47047431, 893962281, 16984034211, 322688618535, 6131066008678]$ | $203$ | $[203, 130529, 47425469, 16943316845, 6124641547248, 2213387850962561, 799087621661019593, 288449415785418438005, 104127647414623118474279, 37589971930139626308751104]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.508805.3 | $D_{4}$ | simple | 
      
              | 2.19.al_ck | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - 3 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 365, 6948, 130249, 2474439, 47049446, 893966901, 16984068049, 322688697372, 6131064544925]$ | $204$ | $[204, 131376, 47655216, 16974304704, 6126953978724, 2213482610416896, 799091751465814164, 288449990483531192064, 104127672854620178665776, 37589962955782452689708976]$ | $4$ | $4$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-67}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ad | 
      
              | 2.19.al_cl | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 63 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 367, 6981, 130483, 2475264, 47050027, 893959971, 16984039603, 322688549499, 6131062547302]$ | $205$ | $[205, 132225, 47885335, 17004796125, 6128994732400, 2213509905722025, 799085556480660115, 288449507361741091125, 104127625137960514438945, 37589950708235677119840000]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.443205.2 | $D_{4}$ | simple | 
      
              | 2.19.al_cm | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 64 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 369, 7014, 130713, 2475979, 47049186, 893941953, 16983957489, 322688277282, 6131060869489]$ | $206$ | $[206, 133076, 48115832, 17034792608, 6130763962866, 2213470309936064, 799069449922614818, 288448112752124296832, 104127537296738062291928, 37589940421461346132563156]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.349112.1 | $D_{4}$ | simple | 
      
              | 2.19.al_cn | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 65 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 371, 7047, 130939, 2476584, 47046935, 893913309, 16983830275, 322687980711, 6131060307686]$ | $207$ | $[207, 133929, 48346713, 17064295677, 6132261832272, 2213364397163049, 799043845092737661, 288445952175817883733, 104127441596475871887171, 37589936977009790399856384]$ | $5$ | $5$ | $2$ | $2$ | $1$ | 4.0.26533.1 | $D_{4}$ | simple | 
      
              | 2.19.al_co | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 7 x + 19 x^{2} )( 1 - 4 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 373, 7080, 131161, 2477079, 47043286, 893874501, 16983666481, 322687757400, 6131061600853]$ | $208$ | $[208, 134784, 48577984, 17093306880, 6133488510448, 2213192742598656, 799009155384017968, 288443170343851960320, 104127369536184992880064, 37589944905494015471858304]$ | $6$ | $6$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) | $C_2$, $C_2$ | 1.19.ah $\times$ 1.19.ae | 
      
              | 2.19.al_cp | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 11 x + 67 x^{2} - 209 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 375, 7113, 131379, 2477464, 47038251, 893825991, 16983474579, 322687702587, 6131065430950]$ | $209$ | $[209, 135641, 48809651, 17121827789, 6134444175024, 2212955922576641, 798965794289625479, 288439911158049053909, 104127351848432066042141, 37589968388064876490181376]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.45725.1 | $D_{4}$ | simple | 
      
              | 2.19.al_cq | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ |  | $( 1 - 6 x + 19 x^{2} )( 1 - 5 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $9$ | $[9, 377, 7146, 131593, 2477739, 47031842, 893768241, 16983262993, 322687909134, 6131072423177]$ | $210$ | $[210, 136500, 49041720, 17149860000, 6135129011550, 2212654514616000, 798914175411488430, 288436317711993360000, 104127418499416252962840, 37590011257887134458912500]$ | $0$ | $0$ | $4$ | $2$ | $1$ | \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-51}) \) | $C_2$, $C_2$ | 1.19.ag $\times$ 1.19.af | 
      
              | 2.19.ak_by | $2$ | $\F_{19}$ | $19$ | ✓ |  | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 50 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $10$ | $[10, 362, 6790, 129166, 2471650, 47045882, 893899870, 16983416158, 322686428890, 6131066257802]$ | $212$ | $[212, 129744, 46568132, 16833505536, 6120057514052, 2213314951942224, 799031830790578772, 288438918993308160000, 104126940843523446384692, 37589973457558189176538704]$ | $8$ | $8$ | $4$ | $8$ | $4$ | \(\Q(i, \sqrt{13})\) | $C_2^2$ | simple | 
      
              | 2.19.ak_bz | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 51 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 364, 6820, 129364, 2472550, 47050918, 893935570, 16983615844, 322687208860, 6131068985404]$ | $213$ | $[213, 130569, 46774800, 16859199849, 6122283767853, 2213551925280000, 799063743815563173, 288442310363975783049, 104127192529352677789200, 37589990180663150170659609]$ | $6$ | $6$ | $2$ | $2$ | $1$ | 4.0.46224.1 | $D_{4}$ | simple | 
      
              | 2.19.ak_ca | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 52 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 366, 6850, 129558, 2473350, 47054766, 893962030, 16983757278, 322687625770, 6131069385406]$ | $214$ | $[214, 131396, 46981774, 16884386000, 6124262327854, 2213732987579876, 799087397110427254, 288444712420098176000, 104127327060645758306374, 37589992633096691075945316]$ | $10$ | $10$ | $2$ | $2$ | $1$ | 4.0.38720.3 | $D_{4}$ | simple | 
      
              | 2.19.ak_cb | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 53 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 368, 6880, 129748, 2474050, 47057438, 893979670, 16983847588, 322687758640, 6131068120448]$ | $215$ | $[215, 132225, 47189060, 16909065225, 6125993285375, 2213858705619600, 799103166028169735, 288446246214898113225, 104127369936118146687140, 37589984877552646042640625]$ | $6$ | $6$ | $2$ | $2$ | $1$ | 4.0.1089600.1 | $D_{4}$ | simple | 
      
              | 2.19.ak_cc | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - 2 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 370, 6910, 129934, 2474650, 47058946, 893988910, 16983893854, 322687684330, 6131065805650]$ | $216$ | $[216, 133056, 47396664, 16933238784, 6127476737976, 2213929646824896, 799111425953312856, 288447031986733154304, 104127345957440010149784, 37589970685374618644016576]$ | $16$ | $16$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ac | 
      
              | 2.19.ak_cd | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 55 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 372, 6940, 130116, 2475150, 47059302, 893990170, 16983903108, 322687477540, 6131063008852]$ | $217$ | $[217, 133889, 47604592, 16956907961, 6128712789577, 2213946379307264, 799112552306949937, 288447189159454075625, 104127279229248736876912, 37589953538027409138268929]$ | $9$ | $9$ | $2$ | $2$ | $1$ | 4.0.67136.2 | $D_{4}$ | simple | 
      
              | 2.19.ak_ce | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 56 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 374, 6970, 130294, 2475550, 47058518, 893983870, 16983882334, 322687210810, 6131060250854]$ | $218$ | $[218, 134724, 47812850, 16980074064, 6129701550578, 2213909471902500, 799106920552060058, 288446836342806918144, 104127193159165489632650, 37589936628568662296514084]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.969024.4 | $D_{4}$ | simple | 
      
              | 2.19.ak_cf | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ |  | ✓ |  | ✓ | ✓ | $1 - 10 x + 57 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,\frac{1}{2},\frac{1}{2},1]$ | $1$ | $1$ | $1$ | $2$ | $0$ | $10$ | $[10, 376, 7000, 130468, 2475850, 47056606, 893970430, 16983838468, 322686954520, 6131058005656]$ | $219$ | $[219, 135561, 48021444, 17002738425, 6130443137979, 2213819494209936, 799094906199094899, 288446091332880808425, 104127110457816217373604, 37589922863120783333154441]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.820800.3 | $D_{4}$ | simple | 
      
              | 2.19.ak_cg | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 58 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 378, 7030, 130638, 2476050, 47053578, 893950270, 16983778398, 322686776890, 6131056700698]$ | $220$ | $[220, 136400, 48230380, 17024902400, 6130937675500, 2213677016632400, 799076884811842780, 288445071112603750400, 104127053138857561322620, 37589914862343173855250000]$ | $18$ | $18$ | $2$ | $2$ | $1$ | 4.0.40400.1 | $D_{4}$ | simple | 
      
              | 2.19.ak_ch | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 7 x + 19 x^{2} )( 1 - 3 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 380, 7060, 130804, 2476150, 47049446, 893923810, 16983708964, 322686743980, 6131056717100]$ | $221$ | $[221, 137241, 48439664, 17046567369, 6131185293701, 2213482610416896, 799053232013574941, 288443891852288625609, 104127042519008111932784, 37589914962904844325667401]$ | $8$ | $8$ | $12$ | $6$ | $1$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-67}) \) | $C_2$, $C_2$ | 1.19.ah $\times$ 1.19.ad | 
      
              | 2.19.ak_ci | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 60 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 382, 7090, 130966, 2476150, 47044222, 893891470, 16983636958, 322686919690, 6131058389902]$ | $222$ | $[222, 138084, 48649302, 17067734736, 6131186130102, 2213236847696004, 799024323493479102, 288442668910231680000, 104127099218085493490382, 37589925218957464314310404]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.288576.1 | $D_{4}$ | simple | 
      
              | 2.19.ak_cj | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 10 x + 61 x^{2} - 190 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 384, 7120, 131124, 2476050, 47037918, 893853670, 16983569124, 322687365760, 6131062008304]$ | $223$ | $[223, 138929, 48859300, 17088405929, 6130940329303, 2212940301530000, 798990535013385343, 288441516833365815689, 104127243159049773789700, 37589947403608916796295809]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.140864.1 | $D_{4}$ | simple | 
      
              | 2.19.ak_ck | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 6 x + 19 x^{2} )( 1 - 4 x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $10$ | $[10, 386, 7150, 131278, 2475850, 47030546, 893810830, 16983512158, 322688141770, 6131067815906]$ | $224$ | $[224, 139776, 49069664, 17108582400, 6130448043104, 2212593545949696, 798952242414789344, 288440549357971046400, 104127493568053717359584, 37589983010397427949154816]$ | $8$ | $8$ | $4$ | $2$ | $1$ | \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-15}) \) | $C_2$, $C_2$ | 1.19.ag $\times$ 1.19.ae | 
      
              | 2.19.ak_cl | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 5 x + 19 x^{2} )^{2}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $10$ | $[10, 388, 7180, 131428, 2475550, 47022118, 893763370, 16983472708, 322689305140, 6131076010948]$ | $225$ | $[225, 140625, 49280400, 17128265625, 6129709430625, 2212197156000000, 798909821626178025, 288439879410444515625, 104127868974500422131600, 37590033254766349306640625]$ | $6$ | $6$ | $6$ | $6$ | $1$ | \(\Q(\sqrt{-51}) \) | $C_2$ | 1.19.af 2 | 
      
              | 2.19.aj_bp | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 9 x + 41 x^{2} - 171 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $11$ | $[11, 363, 6725, 128971, 2472896, 47048991, 893848799, 16983168931, 322686779645, 6131069107878]$ | $223$ | $[223, 130009, 46130449, 16808213565, 6123139391248, 2213461142579401, 798986180611862053, 288434720228854856085, 104127054027894241747699, 37589990931555184078299904]$ | $2$ | $2$ | $2$ | $2$ | $1$ | 4.0.404685.1 | $D_{4}$ | simple | 
      
              | 2.19.aj_bq | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 9 x + 42 x^{2} - 171 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $11$ | $[11, 365, 6752, 129129, 2473661, 47054486, 893886599, 16983349009, 322687499168, 6131072894525]$ | $224$ | $[224, 130816, 46315136, 16828693504, 6125033342624, 2213719738617856, 799019969453885984, 288437778553232093184, 104127286208732858562176, 37590014147756807110264576]$ | $8$ | $8$ | $2$ | $2$ | $1$ | 4.0.257725.1 | $D_{4}$ | simple | 
      
              | 2.19.aj_br | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 9 x + 43 x^{2} - 171 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $11$ | $[11, 367, 6779, 129283, 2474336, 47059027, 893917469, 16983482803, 322687893881, 6131074547302]$ | $225$ | $[225, 131625, 46500075, 16848658125, 6126704118000, 2213933438354625, 799047563932652175, 288440050825745983125, 104127413577379176804525, 37590024281049051458400000]$ | $15$ | $15$ | $2$ | $2$ | $1$ | 4.0.18605.1 | $D_{4}$ | simple | 
      
              | 2.19.aj_bs | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 9 x + 44 x^{2} - 171 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $11$ | $[11, 369, 6806, 129433, 2474921, 47062626, 893941787, 16983576049, 322688021618, 6131074533489]$ | $226$ | $[226, 132436, 46685272, 16868108448, 6128151768766, 2214102806033344, 799069301826592078, 288441634462135903872, 104127454796245684113208, 37590024196360018972713556]$ | $4$ | $4$ | $2$ | $2$ | $1$ | 4.0.1845432.1 | $D_{4}$ | simple | 
      
              | 2.19.aj_bt | $2$ | $\F_{19}$ | $19$ | ✓ | ✓ | ✓ | ✓ |  |  | ✓ | ✓ | $1 - 9 x + 45 x^{2} - 171 x^{3} + 361 x^{4}$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $2$ | $0$ | $11$ | $[11, 371, 6833, 129579, 2475416, 47065295, 893959931, 16983634435, 322687938269, 6131073282086]$ | $227$ | $[227, 133249, 46870733, 16887045517, 6129376351472, 2214228406289809, 799085520922156121, 288442626062387377653, 104127427900407754641071, 37590016523920554069232384]$ | $7$ | $7$ | $2$ | $2$ | $1$ | 4.0.2058997.1 | $D_{4}$ | simple | 
      
              | 2.19.aj_bu | $2$ | $\F_{19}$ | $19$ |  |  | ✓ | ✓ |  |  | ✓ | ✓ | $( 1 - 8 x + 19 x^{2} )( 1 - x + 19 x^{2} )$ | $[0,0,1,1]$ | $0$ | $2$ | $0$ | $1$ | $1$ | $11$ | $[11, 373, 6860, 129721, 2475821, 47067046, 893972279, 16983663601, 322687697780, 6131071184053]$ | $228$ | $[228, 134064, 47056464, 16905470400, 6130377927948, 2214310804183296, 799096559016987228, 288443121410865657600, 104127350297602681851984, 37590003660735378639373104]$ | $10$ | $10$ | $24$ | $12$ | $6$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) | $C_2$, $C_2$ | 1.19.ai $\times$ 1.19.ab |