# Properties

 Label 2.181.abx_bla Base Field $\F_{181}$ Dimension $2$ Ordinary Yes $p$-rank $2$ Principally polarizable Yes Contains a Jacobian No

## Invariants

 Base field: $\F_{181}$ Dimension: $2$ L-polynomial: $( 1 - 25 x + 181 x^{2} )( 1 - 24 x + 181 x^{2} )$ Frobenius angles: $\pm0.120568372405$, $\pm0.149335043618$ Angle rank: $2$ (numerical) Jacobians: 0

This isogeny class is not simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $2$ Slopes: $[0, 0, 1, 1]$

## Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 24806 1057777452 35144989483400 1151953917217444800 37738771034746308795806 1236354835482079799582995200 40504200907100258103785614856606 1326958068119436112570739794294675200 43472473131471969430989119699032637558600 1424201691989067777523831732304639802015408012

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 133 32285 5926900 1073299201 194265141553 35161847216282 6364291225905613 1151936661714217441 208500535107498669700 37738596847274018829605

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{181}$
 The isogeny class factors as 1.181.az $\times$ 1.181.ay and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{181}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.181.ab_aje $2$ (not in LMFDB) 2.181.b_aje $2$ (not in LMFDB) 2.181.bx_bla $2$ (not in LMFDB)