# Properties

 Label 2.181.abv_bje Base Field $\F_{181}$ Dimension $2$ Ordinary Yes $p$-rank $2$ Principally polarizable Yes Contains a Jacobian No

## Invariants

 Base field: $\F_{181}$ Dimension: $2$ L-polynomial: $( 1 - 24 x + 181 x^{2} )( 1 - 23 x + 181 x^{2} )$ Frobenius angles: $\pm0.149335043618$, $\pm0.173686936480$ Angle rank: $2$ (numerical) Jacobians: 0

This isogeny class is not simple.

## Newton polygon

This isogeny class is ordinary. $p$-rank: $2$ Slopes: $[0, 0, 1, 1]$

## Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 25122 1060902060 35159052952800 1151998223159010240 37738873490422887496362 1236354979603990374674784000 40504200802083358208141825233002 1326958066503335699349987336399394560 43472473124477292370272943458912535423200 1424201691967429743954485698682674204645951500

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 135 32381 5929272 1073340481 194265668955 35161851315098 6364291209404655 1151936660311275361 208500535073951143992 37738596846700652690501

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{181}$
 The isogeny class factors as 1.181.ay $\times$ 1.181.ax and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{181}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.181.ab_ahi $2$ (not in LMFDB) 2.181.b_ahi $2$ (not in LMFDB) 2.181.bv_bje $2$ (not in LMFDB)