Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 17 x^{2} )( 1 + 8 x + 17 x^{2} )$ |
| $1 + 10 x + 50 x^{2} + 170 x^{3} + 289 x^{4}$ | |
| Frobenius angles: | $\pm0.577979130377$, $\pm0.922020869623$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $10$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $520$ | $83200$ | $24186760$ | $6922240000$ | $2020329118600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $28$ | $290$ | $4924$ | $82878$ | $1422908$ | $24137570$ | $410292764$ | $6975884158$ | $118588023388$ | $2015993900450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=12 x^5+4 x^4+14 x^3+8 x^2+9 x+2$
- $y^2=2 x^6+8 x^5+x^4+4 x^3+4 x^2+9 x+9$
- $y^2=2 x^6+12 x^5+15 x^4+15 x^2+5 x+2$
- $y^2=13 x^6+16 x^5+x^4+3 x^3+13 x^2+5$
- $y^2=x^6+10 x^5+6 x^4+2 x^3+12 x^2+4 x+8$
- $y^2=8 x^6+6 x^5+16 x^4+2 x^3+13 x^2+15 x+12$
- $y^2=x^6+5 x^5+3 x^4+5 x^2+6 x+10$
- $y^2=16 x^6+6 x^5+15 x^4+15 x^3+2 x^2+6 x+13$
- $y^2=4 x^6+16 x^5+11 x^4+6 x^3+13 x^2+13 x+9$
- $y^2=9 x^6+13 x^5+13 x^4+9 x^3+2 x^2+16 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{4}}$.
Endomorphism algebra over $\F_{17}$| The isogeny class factors as 1.17.c $\times$ 1.17.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{17^{4}}$ is 1.83521.amk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{17^{2}}$
The base change of $A$ to $\F_{17^{2}}$ is 1.289.abe $\times$ 1.289.be. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.