Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 44 x^{2} - 153 x^{3} + 289 x^{4}$ |
| Frobenius angles: | $\pm0.116336544503$, $\pm0.449669877836$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{41})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $172$ | $85312$ | $24143296$ | $6931770624$ | $2014449490252$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $9$ | $297$ | $4914$ | $82993$ | $1418769$ | $24149022$ | $410408721$ | $6975870241$ | $118587876498$ | $2015996344857$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=14 x^6+11 x^5+2 x^4+8 x^3+4 x^2+14 x+13$
- $y^2=5 x^6+4 x^5+7 x^4+3 x^3+13 x^2+6 x$
- $y^2=14 x^6+2 x^5+15 x^4+2 x^3+x^2+14 x+5$
- $y^2=9 x^5+7 x^4+10 x^3+12 x^2+7 x+12$
- $y^2=7 x^6+6 x^5+8 x^3+12 x^2+10$
- $y^2=11 x^6+8 x^5+3 x^4+8 x^3+9 x^2+7 x+11$
- $y^2=6 x^6+15 x^5+9 x^4+16 x^3+6 x^2+14 x+13$
- $y^2=6 x^6+13 x^5+16 x^4+2 x^3+4 x^2+16 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{6}}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{41})\). |
| The base change of $A$ to $\F_{17^{6}}$ is 1.24137569.img 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
- Endomorphism algebra over $\F_{17^{2}}$
The base change of $A$ to $\F_{17^{2}}$ is the simple isogeny class 2.289.h_ajg and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{41})\). - Endomorphism algebra over $\F_{17^{3}}$
The base change of $A$ to $\F_{17^{3}}$ is the simple isogeny class 2.4913.a_img and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{41})\).
Base change
This is a primitive isogeny class.