Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 41 x^{2} - 153 x^{3} + 289 x^{4}$ |
| Frobenius angles: | $\pm0.0511302365929$, $\pm0.466745019538$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.328653.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $169$ | $83317$ | $23743993$ | $6893398629$ | $2011960631824$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $9$ | $291$ | $4833$ | $82531$ | $1417014$ | $24139923$ | $410348241$ | $6975598339$ | $118587234249$ | $2015995427166$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=6 x^6+3 x^5+4 x^4+6 x^3+14 x^2+10 x+5$
- $y^2=14 x^6+4 x^5+11 x^4+12 x^3+7 x^2+3 x+7$
- $y^2=4 x^6+x^5+16 x^4+9 x^3+13 x^2+x+5$
- $y^2=11 x^6+6 x^5+3 x^4+3 x^3+5 x^2+11$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is 4.0.328653.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.17.j_bp | $2$ | (not in LMFDB) |