Properties

Label 2.167.abx_bjx
Base field $\F_{167}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{167}$
Dimension:  $2$
L-polynomial:  $1 - 49 x + 933 x^{2} - 8183 x^{3} + 27889 x^{4}$
Frobenius angles:  $\pm0.0422800574123$, $\pm0.140113312054$
Angle rank:  $2$ (numerical)
Number field:  4.0.35525.3
Galois group:  $D_{4}$
Jacobians:  $4$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $20591$ $762999505$ $21668468942789$ $604937904758306525$ $16871909365461335615056$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $119$ $27355$ $4652417$ $777758763$ $129891842724$ $21691963258615$ $3622557634764887$ $604967117648915523$ $101029508538854049749$ $16871927924946103461150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{167}$.

Endomorphism algebra over $\F_{167}$
The endomorphism algebra of this simple isogeny class is 4.0.35525.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.167.bx_bjx$2$(not in LMFDB)