Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 49 x + 933 x^{2} - 8183 x^{3} + 27889 x^{4}$ |
| Frobenius angles: | $\pm0.0422800574123$, $\pm0.140113312054$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.35525.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $20591$ | $762999505$ | $21668468942789$ | $604937904758306525$ | $16871909365461335615056$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $119$ | $27355$ | $4652417$ | $777758763$ | $129891842724$ | $21691963258615$ | $3622557634764887$ | $604967117648915523$ | $101029508538854049749$ | $16871927924946103461150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=43 x^6+x^5+51 x^4+51 x^3+x^2+112 x+161$
- $y^2=49 x^6+38 x^5+10 x^4+156 x^3+59 x^2+53 x+14$
- $y^2=95 x^6+124 x^5+158 x^4+103 x^3+161 x^2+153 x+141$
- $y^2=95 x^6+65 x^5+50 x^4+100 x^3+90 x^2+29 x+145$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is 4.0.35525.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.bx_bjx | $2$ | (not in LMFDB) |