Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 167 x^{2} )( 1 - 23 x + 167 x^{2} )$ |
| $1 - 48 x + 909 x^{2} - 8016 x^{3} + 27889 x^{4}$ | |
| Frobenius angles: | $\pm0.0816525061160$, $\pm0.150776270497$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $9$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $20735$ | $764354305$ | $21674535362480$ | $604958445574622425$ | $16871968320451579081175$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $120$ | $27404$ | $4653720$ | $777785172$ | $129892296600$ | $21691970201486$ | $3622557731985480$ | $604967118921767908$ | $101029508554764086280$ | $16871927925140570573564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):
- $y^2=23 x^6+165 x^5+41 x^4+29 x^3+41 x^2+165 x+23$
- $y^2=13 x^6+91 x^5+77 x^4+17 x^3+157 x^2+164 x+159$
- $y^2=125 x^6+127 x^5+91 x^4+141 x^3+148 x^2+81 x+15$
- $y^2=133 x^6+126 x^5+13 x^4+155 x^2+54 x+63$
- $y^2=164 x^6+137 x^5+42 x^4+36 x^3+76 x^2+54 x+5$
- $y^2=90 x^6+93 x^5+16 x^4+12 x^3+127 x^2+122 x+55$
- $y^2=32 x^6+34 x^5+7 x^4+49 x^3+162 x^2+123 x+38$
- $y^2=75 x^6+60 x^5+135 x^4+25 x^3+135 x^2+60 x+75$
- $y^2=25 x^6+150 x^5+38 x^4+154 x^3+97 x^2+107 x+36$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The isogeny class factors as 1.167.az $\times$ 1.167.ax and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.ac_ajh | $2$ | (not in LMFDB) |
| 2.167.c_ajh | $2$ | (not in LMFDB) |
| 2.167.bw_biz | $2$ | (not in LMFDB) |