Properties

Label 2.167.abv_bib
Base field $\F_{167}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{167}$
Dimension:  $2$
L-polynomial:  $1 - 47 x + 885 x^{2} - 7849 x^{3} + 27889 x^{4}$
Frobenius angles:  $\pm0.0985019100004$, $\pm0.166692854905$
Angle rank:  $2$ (numerical)
Number field:  4.0.258725.1
Galois group:  $D_{4}$
Jacobians:  $6$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $20879$ $765653809$ $21679931364101$ $604974641631791261$ $16872006825207323079184$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $121$ $27451$ $4654879$ $777805995$ $129892593036$ $21691973538487$ $3622557758315785$ $604967118961235139$ $101029508551333260763$ $16871927925058514432286$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{167}$.

Endomorphism algebra over $\F_{167}$
The endomorphism algebra of this simple isogeny class is 4.0.258725.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.167.bv_bib$2$(not in LMFDB)