Properties

Label 2.16.aj_bv
Base Field $\F_{2^{4}}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{4}}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 47 x^{2} - 144 x^{3} + 256 x^{4}$
Frobenius angles:  $\pm0.177258786107$, $\pm0.410961538347$
Angle rank:  $2$ (numerical)
Number field:  4.0.466137.1
Galois group:  $D_{4}$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 151 69007 17229100 4300861275 1099406044381 281594960306800 72072136714963291 18447235639717043475 4722334799802285208900 1208921907176053523048887

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 8 270 4205 65626 1048478 16784367 268489628 4295081746 68719015685 1099508069430

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{4}}$
The endomorphism algebra of this simple isogeny class is 4.0.466137.1.
All geometric endomorphisms are defined over $\F_{2^{4}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.16.j_bv$2$2.256.n_ez