Properties

Label 2.16.ah_bl
Base Field $\F_{2^{4}}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{4}}$
Dimension:  $2$
L-polynomial:  $1 - 7 x + 37 x^{2} - 112 x^{3} + 256 x^{4}$
Frobenius angles:  $\pm0.218216417042$, $\pm0.467819082007$
Angle rank:  $2$ (numerical)
Number field:  4.0.54665.2
Galois group:  $D_{4}$
Jacobians:  24

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 24 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 175 72275 17189200 4294941875 1100532041875 281665462769600 72062553322733575 18445962754417191875 4722302242744010822800 1208925105619501580506875

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 10 282 4195 65538 1049550 16788567 268453930 4294785378 68718541915 1099510978402

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{4}}$
The endomorphism algebra of this simple isogeny class is 4.0.54665.2.
All geometric endomorphisms are defined over $\F_{2^{4}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.16.h_bl$2$2.256.z_mb