Properties

Label 2.16.ah_bj
Base Field $\F_{2^{4}}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{4}}$
Dimension:  $2$
L-polynomial:  $1 - 7 x + 35 x^{2} - 112 x^{3} + 256 x^{4}$
Frobenius angles:  $\pm0.195263933552$, $\pm0.481742130494$
Angle rank:  $2$ (numerical)
Number field:  4.0.1852257.1
Galois group:  $D_{4}$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 173 71103 17015588 4288150827 1101046609883 281722394213712 72064605474090017 18446130218495098323 4722322639529308061852 1208925476060871129001023

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 10 278 4153 65434 1050040 16791959 268461574 4294824370 68718838729 1099511315318

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{4}}$
The endomorphism algebra of this simple isogeny class is 4.0.1852257.1.
All geometric endomorphisms are defined over $\F_{2^{4}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.16.h_bj$2$2.256.v_gn