Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 41 x + 708 x^{2} - 6109 x^{3} + 22201 x^{4}$ |
| Frobenius angles: | $\pm0.0770400434079$, $\pm0.249339903978$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4269740.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $36$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $16760$ | $487045600$ | $10941983745920$ | $242944511277296000$ | $5393415051852451427800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $109$ | $21937$ | $3307786$ | $492903633$ | $73439971689$ | $10942525885942$ | $1630436415074821$ | $242935032115762113$ | $36197319877822523554$ | $5393400662170660894377$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=75 x^6+82 x^5+4 x^4+101 x^3+12 x^2+48 x+50$
- $y^2=50 x^6+126 x^5+42 x^4+59 x^3+52 x^2+134 x+34$
- $y^2=31 x^6+64 x^5+95 x^4+65 x^3+14 x^2+18 x+108$
- $y^2=35 x^6+47 x^5+113 x^4+45 x^3+50 x^2+17 x+147$
- $y^2=90 x^6+126 x^5+39 x^4+66 x^3+123 x^2+79 x+11$
- $y^2=86 x^6+x^5+66 x^4+45 x^3+24 x^2+113 x+71$
- $y^2=6 x^6+56 x^5+74 x^4+60 x^3+18 x^2+9 x+126$
- $y^2=136 x^6+120 x^5+90 x^4+96 x^3+143 x^2+78 x+74$
- $y^2=115 x^6+52 x^5+147 x^4+114 x^3+127 x^2+124 x+36$
- $y^2=122 x^6+140 x^5+120 x^4+76 x^3+130 x^2+116 x+66$
- $y^2=55 x^6+143 x^5+112 x^4+34 x^3+46 x^2+31 x+34$
- $y^2=146 x^6+28 x^5+62 x^4+74 x^3+142 x^2+92 x+8$
- $y^2=97 x^6+148 x^5+55 x^4+103 x^3+146 x^2+35 x$
- $y^2=141 x^6+127 x^5+115 x^4+8 x^3+5 x^2+34 x+7$
- $y^2=93 x^6+141 x^5+35 x^4+98 x^3+140 x^2+95 x+126$
- $y^2=10 x^6+124 x^5+84 x^4+12 x^3+82 x^2+93 x+12$
- $y^2=74 x^6+12 x^5+124 x^4+9 x^3+51 x^2+77 x+57$
- $y^2=72 x^6+141 x^5+128 x^4+146 x^3+128 x^2+122 x+65$
- $y^2=23 x^6+121 x^5+71 x^4+147 x^3+106 x^2+49 x+116$
- $y^2=76 x^6+22 x^5+58 x^4+95 x^3+5 x^2+8 x+64$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The endomorphism algebra of this simple isogeny class is 4.0.4269740.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.149.bp_bbg | $2$ | (not in LMFDB) |