Properties

Label 2.13.e_s
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 18 x^{2} + 52 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.434919685056$, $\pm0.773693814716$
Angle rank:  $2$ (numerical)
Number field:  4.0.39744.5
Galois group:  $D_{4}$
Jacobians:  $28$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $244$ $32208$ $4837300$ $818340864$ $137059885204$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $190$ $2202$ $28654$ $369138$ $4830190$ $62768346$ $815687134$ $10604505426$ $137857649950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 4.0.39744.5.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ae_s$2$2.169.u_jm