Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 12 x^{2} + 52 x^{3} + 169 x^{4}$ |
Frobenius angles: | $\pm0.399336647683$, $\pm0.833125339852$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.39168.3 |
Galois group: | $D_{4}$ |
Jacobians: | $16$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $238$ | $29988$ | $4998238$ | $817712784$ | $137015457838$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $178$ | $2274$ | $28630$ | $369018$ | $4829794$ | $62747514$ | $815805790$ | $10604440626$ | $137857373938$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=9 x^6+3 x^5+9 x^4+3 x^3+8 x^2+5 x+11$
- $y^2=x^6+12 x^5+4 x^4+10 x^3+12 x^2+1$
- $y^2=4 x^6+10 x^5+9 x^4+5 x^3+3 x^2+2 x+5$
- $y^2=5 x^6+6 x^5+5 x^3+9 x^2+2 x+2$
- $y^2=8 x^6+9 x^5+2 x^4+5 x^3+11 x^2+3 x+12$
- $y^2=11 x^5+4 x^4+8 x^3+9 x^2+4 x+12$
- $y^2=9 x^6+9 x^4+11 x^3+7 x^2+3 x+3$
- $y^2=5 x^5+9 x^3+11 x+8$
- $y^2=3 x^6+3 x^5+x^4+2 x^3+2 x^2+3$
- $y^2=9 x^6+4 x^5+6 x^4+6 x^3+9 x^2+x+4$
- $y^2=9 x^6+4 x^5+2 x^4+8 x^3+3 x^2+12 x+9$
- $y^2=4 x^6+12 x^5+6 x^4+4 x^3+8 x^2+11 x+6$
- $y^2=x^6+5 x^5+12 x^4+5 x^3+2 x^2+2 x+2$
- $y^2=5 x^6+x^5+10 x^4+2 x^3+12 x^2+6 x+4$
- $y^2=4 x^6+4 x^5+6 x^4+11 x^3+x^2+9 x+1$
- $y^2=4 x^6+x^5+9 x^4+x^3+2 x^2+6 x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$The endomorphism algebra of this simple isogeny class is 4.0.39168.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.13.ae_m | $2$ | 2.169.i_co |