Properties

Label 2.13.ak_bx
Base Field $\F_{13}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 49 x^{2} - 130 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.151058869957$, $\pm0.334339837461$
Angle rank:  $2$ (numerical)
Number field:  4.0.27200.2
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 79 28361 5005756 823631801 137951509639 23297168861456 3937876498186591 665477878436414825 112458523017372489244 19005008727769158477321

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 168 2278 28836 371544 4826622 62756488 815805828 10604793214 137858817928

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 4.0.27200.2.
All geometric endomorphisms are defined over $\F_{13}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.13.k_bx$2$2.169.ac_fj