Properties

Label 2.13.aj_bq
Base Field $\F_{13}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 42 x^{2} - 117 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.136139978944$, $\pm0.390198274089$
Angle rank:  $2$ (numerical)
Number field:  4.0.119068.1
Galois group:  $D_{4}$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 86 29068 4947752 815299264 137654604926 23305732692736 3939020624607518 665504633516606208 112456985748631159016 19004909398444914345388

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 173 2252 28545 370745 4828394 62774717 815838625 10604648252 137858097413

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 4.0.119068.1.
All geometric endomorphisms are defined over $\F_{13}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.13.j_bq$2$2.169.d_ae