Properties

Label 2.13.ah_bj
Base Field $\F_{13}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 7 x + 35 x^{2} - 91 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.237011831794$, $\pm0.424372211187$
Angle rank:  $2$ (numerical)
Number field:  4.0.198237.1
Galois group:  $D_{4}$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 107 32421 5096303 819635301 137816498192 23306305857237 3937889862548567 665387570615358213 112451569460223669251 19004849352214592169216

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 191 2317 28699 371182 4828511 62756701 815695123 10604137495 137857661846

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 4.0.198237.1.
All geometric endomorphisms are defined over $\F_{13}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.13.h_bj$2$2.169.v_ld