Properties

Label 2.11.ah_bb
Base Field $\F_{11}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 7 x + 27 x^{2} - 77 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.116678659763$, $\pm0.461158112795$
Angle rank:  $2$ (numerical)
Number field:  4.0.206045.1
Galois group:  $D_{4}$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 65 15145 1764035 210894125 25897066000 3144715205905 380023969959335 45952353789519125 5559939576013933565 672760097642165728000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 127 1325 14403 160800 1775107 19501235 214371123 2357957135 25937814102

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 4.0.206045.1.
All geometric endomorphisms are defined over $\F_{11}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.11.h_bb$2$2.121.f_aed